Morphotyping and Molecular Methods to Characterize Ectomycorrhizal Roots and Hyphae in Soil

  • Laura M. Suz
  • Anabela M. Azul
  • Melissa H. Morris
  • Caroline S. Bledsoe
  • María P. Martín
Part of the Soil Biology book series (SOILBIOL, volume 15)

At the interface between plants and soils, ectomycorrhizal (ECM) fungi explore soils, acquire resources, transfer resources to plants, and acquire carbon from plants. Mycorrhizas enhance plant survival, nutrition and growth and play key roles in ecosystems processes such as decomposition, nutrient cycling, soil carbon storage, productivity and sustainability. Mycorrhizas are critical for plant colonization of new soils (e.g. mine spoils, volcanic deposits, glacial moraines). ECM diversity ensures plant reestablishment after disturbance and can enhance survival and growth of trees in reforestation. ECM fungi can promote fine root development as well as produce antibiotics, hormones and vitamins. Mycorrhizal associations may help protect roots from pathogens and moderate effects of heavy metals and toxins. Many environmental problems may be alleviated by mycorrhizas — problems such as pollution, erosion, soil degradation, climate change, degradation of natural resources, and poor land use management.

References

  1. Acinas SG, Sarma-Rupavtarm R, Klepac-Ceraj V, Polz MF (2005) PCR-induced artifacts and bias: insights from comparison of two 16 S rRNA clone libraries constructed from the same sample. Appl Environ Microbiol 71:8966-8969. PubMedGoogle Scholar
  2. Agerer R (1986) Studies on ectomycorrhizae. II. Introducing remarks on characterization and identification. Mycotaxon 26:473-492. Google Scholar
  3. Agerer R (1987-2006) Colour atlas of ectomycorrhizae: 1st-13th delivery. Einhorn-Verlag, Schwäbisch Gmünd.Google Scholar
  4. Agerer R (1991) Characterization of ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Techniques for the study of mycorrhiza. Methods Microbiol 23:25-73.Google Scholar
  5. Agerer R (1995) Anatomical characteristics of identified ectomycorrhizas: an attempt towards a natural classification. In: Varma K, Hock B (ed) Mycorrhiza: structure, function, molecular biology and biotechnology. Springer, Berlin Heidelberg New York, pp 685-734.Google Scholar
  6. Agerer R (1999) Never change a functionally successful principle: the evolution of Boletales s.l. (Hymenomycetes, Basidiomycota) as seen from below-ground features. Sendtnera 6:5-91.Google Scholar
  7. Agerer R (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their pattern of differentiation and putative ecological impor-tance. Mycorrhiza 11:107-114. Google Scholar
  8. Agerer R (2006) Fungal relationships and structural identity of their ectomycorrhizae. Mycol Progr 5:67-107. Google Scholar
  9. Agerer R, Rambold G (2004-2007) [first posted on 2004-06-01; most recent update: 2007-05-02]. DEEMY - An Information System for Characterization and Determination of Ectomycorrhizae. www.deemy.de - München, Germany.
  10. Agerer R, Beenken L, Christan J (1998) Gomphus clavatus (Pers.: Fr.) S. F. Gray + Picea abies (L.) Karst. Descr. Ectomyc. 3:25-29. Google Scholar
  11. Aguín-Casal O, Sáinz-Osés MJ, Mansilla-Vázquez JP (2004) Armillaria species infesting vine-yards in northeastern spain. Eur J Plant Pathol 110:683-687. Google Scholar
  12. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402. PubMedGoogle Scholar
  13. Amicucci A, Zambonelli A, Giomaro G, Potenza L, Stocchi V (1998) Identification of ectomycor-rhizal fungi of the genus Tuber by species-specific ITS primers. Mol Ecol 7:273-277.Google Scholar
  14. Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769-779. PubMedGoogle Scholar
  15. Anderson IC, Parkin PI (2007) Detection of active soil fungi by RT-PCR amplification of precur-sor rRNA molecules. J Microbiol Methods 68:248-253. PubMedGoogle Scholar
  16. Anderson IC, Campbell CD, Prosser JI (2003) Potential bias of fungal 18 S rDNA and internal transcribed spacer polymerase chain reaction primers for estimating fungal biodiversity in soil. Environ Microbiol 5:36-47. PubMedGoogle Scholar
  17. Azul AM, Agerer R, Freitas H (2001a) “Quercirhiza ectendotrophica” + Quercus suber L. Descr Ectomyc 5:67-72.Google Scholar
  18. Azul AM, Agerer R, Freitas H (2001b) “Quercirhiza internangularis” + Quercus suber L. Descr Ectomyc 5:79-83.Google Scholar
  19. Azul AM, Agerer R, Freitas H (2001c) “Quercirhiza pedicae” + Quercus suber L. Descr Ectomyc 5:85-91.Google Scholar
  20. Azul AM, Agerer R, Freitas H (2001d) “Quercirhiza sclerotiigera” + Quercus suber L. Descr Ectomyc 5:99-105.Google Scholar
  21. Azul AM, Agerer R, Freitas H (2006a) “Quercirhiza dendrohyphidiomorpha” + Quercus suber L. Descr Ectomyc 9/10:87-91.Google Scholar
  22. Azul AM, Martín MP, Agerer R, Freitas H (2006b) “Quercirhiza auratercystidiata” + Quercus suber L. Descr Ectomyc 9/10:81-86.Google Scholar
  23. Azul AM, Martín MP, Agerer R, Freitas H (2006c) “Quercirhiza flavocystidiata” + Quercus suber L. Descr Ectomyc 9/10:93-97.Google Scholar
  24. Azul AM, Martín MP, Agerer R, Freitas H (2006d) “Quercirhiza tomentellofuniculosa” + Quercus suber L. Descr Ectomyc 9/10:127-134.Google Scholar
  25. Baciarelli-Falini L, Rubini A, Riccioni C, Paolocci F (2006) Morphological and molecular analy-ses of ectomycorrhizal diversity in a man-made Tuber melanosporum plantation: description of novel truffle-like morphotypes. Mycorrhiza 16(7):475-484. PubMedGoogle Scholar
  26. Baier R, Ingenhaag J, Blaschke H, Gottlein A, Agerer R (2006) Vertical distribution of an ecto-mycorrhizal community in upper soil horizons of a young Norway spruce (Picea abies [L.] Karst.) stand of the Bavarian Limestone Alps. Mycorrhiza 16:197-206. PubMedGoogle Scholar
  27. Balkwill DL, Labeda DP, Casida LE (1975) Simplified procedures for releasing and concentrating microorganisms from soil for transmission electron-microscopy viewing as thin-sectioned and frozen-etched preparations. Can J Microbiol 21(3):252-262. PubMedGoogle Scholar
  28. Bergemann SE, Garbelotto M (2006) High diversity of fungi recovered from the roots of mature tanoak (Lithocarpus densiflorus) in northern California. Can J Bot 84:1380-1394.Google Scholar
  29. Bertini L, Potenza L, Zambonelli A, Amicucci A, Stocchi V (1998) Restriction fragment length polymorphism species-specific patterns in the identification of white truffles. FEMS Microbiol Lett 164:397-401. PubMedGoogle Scholar
  30. Bidartondo M, Kretzer AM, Bruns TD (2000) High root concentration and uneven ectomycor-rhizal diversity near Sarcodes sanguinea (Ericaceae): a cheater that stimulates its victims? Am J Bot 87:1783-1788. PubMedGoogle Scholar
  31. Bruns TD, Vigalys R, Barns SM, González D, Hibbett DS, Lane DJ, Simon L, Stickel S, Szaro TM, Weisburg WG, Sogin ML (1992) Evolutionary relationships within the fungi: analyses of nuclear small subunit rRNA sequences. Mol Phylogenet Evol 1:231-241. PubMedGoogle Scholar
  32. Burke DJ, Martin KJ, Rygiewicz PT, Topa MA (2005) Ectomycorrhizal fungi indentification in single and pooled samples: terminal restriction fragment length polymorphism (TRFLP) and morphotyping compared. Soil Biol Biochem 37:1683-1694. Google Scholar
  33. Chen DM, Cairney JWG (2002) Investigation of the influence of prescribed burning on ITS pro-files of ectomycorrhizal and other soil fungi at three Austrian sclerophyll forest sites. Mycol Res 106:532-540. Google Scholar
  34. de Román M, Clavería V, de Miguel AM (2005) A revision of the descriptions of ectomycorrhizas published since 1961. Mycol Res 109:1063-1104. PubMedGoogle Scholar
  35. Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527-535. Google Scholar
  36. Dickie IA, Guza RC, Krazewski SE, Reich PB (2004) Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlings. New Phytol 164:375-382. Google Scholar
  37. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13-15. Google Scholar
  38. Edel V (1998) Polymerase chain reaction in mycology: an overview. In: Bridge PD, Arora DK, Reddy CA, Elander RP (eds) Applications of PCR in mycology. CAB International, New York, pp 1-20. Google Scholar
  39. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acid Res 19:1349. PubMedGoogle Scholar
  40. Erland S, Henrion B, Martin F, Glover LA, Alexander IJ (1994) Identification of the ectomycor-rhizal basidiomycete Tylospora Fibrillosa Donk by RFLP analysis of the PCR-amplified ITS and IGS regions of ribosomal DNA. New Phytol 126:525-532. Google Scholar
  41. Frank AB (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Dtsch Bot Ges 3:128-145. Google Scholar
  42. Gagné A, Jany J-L, Bousquet J, Khasa DP (2006) Ectomycorrhizal fungal communities of nursery-inoculated seedlings outplanted on clear-cut sites in northern Alberta. Can J For Res 36:1684-1694. Google Scholar
  43. Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:1-6. Google Scholar
  44. Gehring CA, Theimer TC, Whitham TG, Keim P (1998) Ectomycorrhizal fungal community structure of pinyon pines growing in two environmental extremes. Ecology 79: 1562-1572.CrossRefGoogle Scholar
  45. Genney DR, Anderson IC, Alexander IJ (2006) Fine-scale distribution of pine ectomycorrhizas and their extramatrical mycelium New Phytol 170:381-390. PubMedGoogle Scholar
  46. Gibelli G (1883) Nuovi studii sulla malattia del Castagno detta dell’ inchiostro. Mem R Acad Sci Ist Bologna 4:287-314. Google Scholar
  47. Godbout C, Fortin JA (1983) Morphological features of synthesized ectomycorrhizae of Alnus crispa and A. rugosa. New Phytol 102:429-442. Google Scholar
  48. Goodman DM, Trofymow JA (1998) Distribution of ectomycorrhizas in micro-habitats in mature and old-growth stands of Douglas-fir on southeastern Vancouver Island. Soil Biol Biochem 30:2127-2138. Google Scholar
  49. Griffiths RI, Whiteley AS, O’Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488-5491.PubMedGoogle Scholar
  50. Guescini M, Pierleoni R, Palma F, Zeppa S, Vallorani L, Potenza L, Sacconi C, Giomaro G, Stocchi V (2003) Characterization of the Tuber borchii nitrate reductase gene and its role in ectomycorrhizae. Mol Gen Genomics 269:807-816. Google Scholar
  51. Guidot A, Debaud JC, Effosse A, Marmeisse R (2003) Below-ground distribution and persistence of an ectomycorrhizal fungus. New Phytol 161:539-547. Google Scholar
  52. Henrion B, Le Tacon F, Martin F (1992) Rapid identification of genetic variation of ectomycor-rhizal fungi by amplification of ribosomal RNA genes. New Phytol 122:289-298.Google Scholar
  53. Henrion B, Chevalier G, Martin F (1994) Typing truffle species by PCR amplification of the ribosomal DNA spacers. Mycol Res 98:37-43. Google Scholar
  54. Hibbett DS (1992) Ribosomal RNA and fungal systematics. Trans Mycol Soc Jpn 33:533-556. Google Scholar
  55. Holben WE, Jansson JK, Chelm BK, Tiedje JM (1988) DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl Environ Microbiol 54:703-711. PubMedGoogle Scholar
  56. Hopple JS, Vilgalys R (1994) Phylogenetic-relationships among coprinoid taxa and allies based on data from restriction site mapping of nuclear rDNA. Mycologia 86:6-107.Google Scholar
  57. Hortal S, Pera J, Galipienso L, Parladé J (2006) Molecular identification of the edible ectomycor-rhizal fungus Lactarius deliciosus in the symbiotic and extraradical mycelium stages. J Biotechnol 126:123-134. PubMedGoogle Scholar
  58. Johnson NC, O’Dell TE, Bledsoe CS (1999) Methods for ecological studies of mycorrhizae. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York. Chap 18, pp 378-436.Google Scholar
  59. Jumpponen A (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analysis. New Phytol 158:569-578. Google Scholar
  60. Kårén O, Högberg N, Dahlberg A, Jonsson L, Nylund J-E (1997) Inter- and intraspecific variation in the ITS region of rDNA of ectomycorrhizal fungi in Fennoscandia as detected by endonu-clease analysis. New Phytol 136:313-325. Google Scholar
  61. Kennedy PG, Bergemann SE, Hortal S, Bruns TD (2007) Determining the outcome of field-based competition between two Rhizopogon species using real-time PCR. Mol Ecol 16:881-890.PubMedGoogle Scholar
  62. Koide RT, Xu B, Sharda J (2005a) Contrasting below-ground views of an ectomycorrhizal fungal community. New Phytol 166:251-262. PubMedGoogle Scholar
  63. Koide RT, Xu B, Sharda J, Lekberg Y, Ostiguy N (2005b) Evidence of species interaction with an ectomycorrhizal fungal community. New Phytol 166:305-316. Google Scholar
  64. Kranabetter JM, Wylie T (1998) Ectomycorrhizal community structure across forest openings on naturally regenerated western hemlock seedlings. Can J Bot 76:189-196. Google Scholar
  65. Landeweert R, Leeflang P, Kuyper TW, Hoffland E, Rosling A, Wernars K, Smit E (2003a) Molecular identification of ectomycorrhizal mycelium in soil horizons. Appl Environ Microbiol 69:327-333. PubMedGoogle Scholar
  66. Landeweert R, Veenman C, Kuyper TW, Fritze H, Wernars K, Smit E (2003b) Quantification of ectomycorrhizal mycelium in soil by real-time PCR compared to conventional quantification techniques. FEMS Microbiol Ecol 45:283-292. PubMedGoogle Scholar
  67. Landeweert R, Leeflang P, Smit E, Kuyper T (2005) Diversity of an ectomycorrhizal fungal com-munity studied by a root tip and total soil DNA approach. Mycorrhiza 15:1-6.PubMedGoogle Scholar
  68. Larena I, Salazar O, González V, Julián MC, Rubio V (1999) Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. J Biotechnol 75:187-194.PubMedGoogle Scholar
  69. Lee SB, Taylor JW (1990) Isolation of DNA from fungal mycelia and single spores. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (ed) PCR protocols. A guide to methods and applications. Academic Press, San Diego, pp 282-287. Google Scholar
  70. Lilleskov EA, Bruns TD, Horton TR, Taylor DL, Grogan P (2004) Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiol Ecol 49:319-332.PubMedGoogle Scholar
  71. Magurran AE (1988) Ecological diversity and its measurement. Princeton University Press, New Jersey.Google Scholar
  72. Maidak BL, Cole JR, Lilburn TG, Parker CT, Saxman PR, Farris RJ, Garrity GM, Olsen GJ, Schmidt TM, Tiedje JM (2001) The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173-174. PubMedGoogle Scholar
  73. Martin D, Rybicki E (2000) RDP: detection of recombination amongst aligned sequences. Bioinformatics 16:562-563. PubMedGoogle Scholar
  74. Martin KJ, Rygiewicz P (2005) Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BCM Microbiol 5:28-39. Google Scholar
  75. Martín MP (2000) Protocols: DNA isolation, PCR and RFLP analyses. In: Martín MP (ed) Methods in root-soil interactions research. Protocols. Slovenian Forestry Institute, Ljubljana, Slovenia, pp 35-44. Google Scholar
  76. Martín MP, Calonge FD (2000) Rhizopogon aromaticus (Boletales, Basidiomycotina) a new spe-cies found in Spain. Mycotaxon 75:425-429. Google Scholar
  77. Martín MP, García-Figueres F (1999) Colletotrichum acutatum and C. gloeosporioides cause anthracnose on olives. Eur J Plant Pathol 105:733-741. Google Scholar
  78. Martín MP, Högberg N, Nylund J-E (1998) Molecular analysis confirms morphological reclassifi-cation of the genus Rhizopogon. Mycol Res 102:855-858. Google Scholar
  79. Martín MP, Högberg N, Llistosella J (1999) Macowanites messapicoides, a hypogeous relative to Russula messapica. Mycol Res 103(2):203-208. Google Scholar
  80. Martín MP, Díez J, Manjón J-L (2000a) Methods used for studies in molecular ecology of ecto-mycorrhizal fungi. In: Martín MP (ed) Methods in root-soil interactions research. Protocols. Slovenian Forestry Institute, Ljubljana, Slovenia, pp 25-28. Google Scholar
  81. Martín MP, Kårén O, Nylund J-E (2000b) Molecular ecology of hypogeous mycorrhizal fungi: Rhizopogon roseolus (Basidiomycotina). Phyton 40(4):135-141. Google Scholar
  82. Martin-Laurent F, Philippot L, Hallet S, Chaussod HR, Germon JC, Soulas G, Catroux G (2001) DNA extraction from soils: old bias for new microbial diversity analysis methods. Appl Environ Microbiol 67:2354-2359. PubMedGoogle Scholar
  83. Middleton SA, Anzenberger G, Knapp LA (2004) Denaturing gradient gel electrophoresis (DGGE) screening of clones prior to sequencing. Mol Ecol Notes 4:776-778.Google Scholar
  84. Miller DN, Bryant JE, Madsen EL, Ghiorse WC (1999) Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples. Appl Environ Microbiol 65:4715-4724. PubMedGoogle Scholar
  85. Miozzi L, Balestrini R, Bolchi A, Novero M, Ottonello S, Bonfante P (2005) Phospholipase A2 up-regulation during mycorrhiza formation in Tuber borchii. New Phytol 167:229-238.PubMedGoogle Scholar
  86. Mitchell JI, Zuccaro A (2006) Sequences, the environment and fungi. Mycologist 20:62-74.Google Scholar
  87. Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning, an integrative plant-fungal process. Springer, Berlin Heidelberg New York, pp 357-423.Google Scholar
  88. Morris MH (2006) Diversity, composition and structure of ectomycorrhizal fungal communities on roots of Quercus spp. in California and Mexico. PhD thesis, University of California, Davis.Google Scholar
  89. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335-350. PubMedGoogle Scholar
  90. O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544-5550.PubMedGoogle Scholar
  91. Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7:57-66. Google Scholar
  92. Paolocci F, Rubini A, Granetti B, Arcioni S (1999) Rapid molecular approach for a reliable iden-tification of Tuber spp. ectomycorrhizae. FEMS Microbiol Ecol 28:23-30.Google Scholar
  93. Parladé J, Hortal S, Pera L, Galipienso L (2007) Quantitative detection of Lactarius deliciosus extraradical soil mycelium by real-time PCR and its application in the study of fungal persist-ence and interspecific competition. J Biotechnol 128:14-23. PubMedGoogle Scholar
  94. Pritsch K, Boyle H, Munch JC, Buscot F (1997) Characterization and identification of black alder ectomycorrhizas by PCR/RFLP analyses of the rDNA internal transcribed spacer (ITS). New Phytol 137:357-369. Google Scholar
  95. Qiu X, Wu L, Huang H, McDonel PE, Palumbo AV, Tiedje JM, Zhou J (2001) Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16 s rRNA gene-based cloning. Appl Environ Microbiol 67:880-887. PubMedGoogle Scholar
  96. Raidl S, Agerer R (1998) Hysterangium stoloniferum Tul. & Tul. + Picea abies (L.) Karst. Descr Ectomyc 3:31-35. Google Scholar
  97. Raidl S, Bonfigli R, Agerer R (2005) Calibration of quantitative real-time Taqman PCR by correlation with hyphal biomasa and ITS copies in mycelia of Piloderma croceum. Plant Biol 7:713-717.PubMedGoogle Scholar
  98. Ranjard L, Poly F, Combrisson J, Richaume A, Nazaret S (1998) A single procedure to recover DNA from the surface or inside aggregates and in various size fractions of soil suitable for PCR-based assays of bacterial communities. Eur J Soil Biol 34:89-97. Google Scholar
  99. Ranjard L, Lejon DPH, Mougel C, Scheher L, Merdinoglu D, Chaussod R (2003) Sampling strat-egy in molecular microbial ecology: influence of soil sample size on DNA fingerprinting of fungal and bacterial communities. Environ Microbiol 5:1111-1120. PubMedGoogle Scholar
  100. Rogers SO, Bendich AJ (1985) Extraction of DNA from milligrams amounts of fresh, herbarium and mummified plant tissues. Plant Mol Biol 5:69-76. Google Scholar
  101. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463-5467. PubMedGoogle Scholar
  102. Schaffer HE, Sederoff RR (1981) Improved estimation of DNA fragment lengths from agarose gel. Anal Biochem 115:113-122. PubMedGoogle Scholar
  103. Sicoli G, Fatehi J, Stenlid J (2003) Development of species-specific PCR primers on rDNA for the identification of European Armillaria species. For Pathol 33:287-297. Google Scholar
  104. Smalla K, Cresswell N, Mendonca-Hagler LC, Wolters A, van Elsas JD (1993) Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification. J Appl Bacteriol 74:78-85. Google Scholar
  105. Smith ME, Douhan GW, Rizzo DM (2007) Ectomycorrhizal community structure in a xeric Quercus woodland based on rDNA sequence analysis of sporocarps and pooled roots. New Phytol 174:847-863. PubMedGoogle Scholar
  106. Stendell ER, Horton TR, Bruns TD (1999) Early effects of prescribed fire on the structure of the ectomy-corrhizal fungal community in a Sierra Nevada ponderosa pine forest. Mycol Res 103:1353-1359Google Scholar
  107. Suz LM, Martín MP, Colinas C (2006) Detection of Tuber melanosporum DNA in soil. FEMS Microbiol Lett 254:251-257. PubMedGoogle Scholar
  108. Suzuki MT, Giovannoni SJ (1996) Bias caused by template annealing in the amplification of mix-tures of 16 S rRNA genes by PCR. Appl Environ Microbiol 62:625-630. PubMedGoogle Scholar
  109. Taylor AFS (2002) Fungal diversity in ectomycorrhizal communities: sampling effort and species detection. Plant Soil 244:19-28. Google Scholar
  110. Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8:1837-1850. PubMedGoogle Scholar
  111. Tedersoo L, Koljalg U, Hallenberg N, Larsson K-H (2003) Fine scale distribution of ectomycor-rhizal fungi and roots across substrate layers including coarse woody debris in a mixed forest. New Phytol 159:153-165. Google Scholar
  112. Tedersoo L, Hansen K, Perry BA, Kjøller R (2006) Molecular and morphological diversity of Pezizalean ectomycorrhiza. New Phytol 170:581-596. PubMedGoogle Scholar
  113. Ter Braak CJF, Smilauer P (2002) CANOCO manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power, Ithaca, NY.Google Scholar
  114. van der Heijden M (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69072. Google Scholar
  115. Volossiouk T, Robb EJ, Nazar RN (1995) Direct DNA extraction for PCR-mediated assays of soil organisms. Appl Environ Microbiol 61:3972-3976. PubMedGoogle Scholar
  116. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR pro-tocols. A guide to methods and applications. Academic Press, San Diego, pp 315-322.Google Scholar
  117. Yeates C, Gillings MR, Davison AD, Altavilla N, Veal DA (1998) Methods for microbial DNA extraction from soil for PCR amplification. Biol Proc Online 1:40-47. Google Scholar
  118. Zar JH (1996) Biostatistical analysis, 3rd edn. Prentice Hall International, London.Google Scholar
  119. Zhou J, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316-322. PubMedGoogle Scholar
  120. Zhou ZH, Hogetsu T (2002) Subterranean community structure of ectomycorrhizal fungi under Suillus grevillei sporocarps in a Larix kaempferi forest. New Phytol 154:529-539. Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Laura M. Suz
    • 1
  • Anabela M. Azul
    • 2
  • Melissa H. Morris
    • 3
  • Caroline S. Bledsoe
    • 3
  • María P. Martín
  1. 1.Area Defensa del BoscCentre Tecnològic Forestal de CatalunyaSolsona, LéridaSpain
  2. 2.Centre for Functional Ecology, Department of BotanyUniversity of CoimbraCoimbraPortugal
  3. 3.Department of Land, Air and Water ResourcesUniversity of CaliforniaDavisUSA

Personalised recommendations