On Two Extensions of Abstract Categorial Grammars

  • Philippe de Groote
  • Sarah Maarek
  • Ryo Yoshinaka
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4790)


The abstract categorial grammars (ACGs, for short) are a type-theoretic grammatical formalism intended for the description of natural languages [1]. It is based on the implicative fragment of multiplicative linear logic, which results in a rather simple framework.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    de Groote, Ph.: Towards abstract categorial grammars. In: Association for Computational Linguistics, 39th Annual Meeting and 10th Conference of the European Chapter, Proceedings of the Conference, pp. 148–155 (2001)Google Scholar
  2. 2.
    de Groote, Ph.: Tree-Adjoining Grammars as Abstract Categorial Grammars. In: TAG+6, Proceedings of the sixth International Workshop on Tree Adjoining Grammars and Related Frameworks, pp. 145–150 (2001)Google Scholar
  3. 3.
    de Groote, Ph., Guillaume, B., Salvati, S.: Vector Addition Tree Automata. In: LICS 2004. 19th IEEE Symposium on Logic in Computer Science, pp. 64–73. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  4. 4.
    de Groote, Ph., Pogodalla, S.: On the Expressive Power of Abstract Categorial Grammars: Representing Context-Free Formalisms. Journal of Logic, Language and Information 13(4), 421–438 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    de Groote, P., Maarek, S.: Type-theoretic Extensions of Abstract Categorial Grammars. In: Proceedings of the Workshop on New Directions in Type-theoretic Grammars. ESSLLI (2007)Google Scholar
  6. 6.
    Harper, R., Honsel, F., Plotkin, G.: A framework for defining logics. In: Proceedings of the second annual IEEE symposium on logic in computer science, pp. 194–204. IEEE Computer Society Press, Los Alamitos (1987)Google Scholar
  7. 7.
    Kanazawa, M.: Parsing and Generation as Datalog Queries. In: Association for Computational Linguistics, 45th Annual Meeting, Proceedings of the Conference (to appear, 2007)Google Scholar
  8. 8.
    Lambek, J.: How to program an infinite abacus. Canadian Mathematical Bulletin 4, 279–293 (1961)MathSciNetGoogle Scholar
  9. 9.
    Lincoln, P., Mitchell, J.C., Scedrov, A., Shankar, N.: Decision Problems for Propositional Linear Logic. Annals of Pure and Applied Logic 56(1-3), 239–311 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ranta, A.: Grammatical Framework: A Type-Theoretical Grammar Formalism. Journal of Functional Programming 14(2), 145–189 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Salvati, S.: Problèmes de filtrage et problèmes d’analyse pour les grammaires catégorielles abstraites. Thèse de Doctorat. Institut National Polytechnique de Lorraine (2005)Google Scholar
  12. 12.
    Yoshinaka, R., Kanazawa, M.: The Complexity and Generative Capacity of Lexicalized Abstract Categorial Grammars. In: Blache, P., Stabler, E.P., Busquets, J.V., Moot, R. (eds.) LACL 2005. LNCS (LNAI), vol. 3492, pp. 330–346. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Philippe de Groote
    • 1
  • Sarah Maarek
    • 2
  • Ryo Yoshinaka
    • 1
  1. 1.LORIA & INRIA-Lorraine 
  2. 2.LORIA & Université Nancy 2 

Personalised recommendations