Bounds of the Ability to Destroy Precise Coincidences by Spike Dithering

  • Antonio Pazienti
  • Markus Diesmann
  • Sonja Grün
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4729)

Abstract

Correlation analysis of neuronal spiking activity relies on the availability of distributions for assessing significance. At present, these distributions can only be created by surrogate data. A widely used surrogate, termed dithering, adds a small random offset to all spikes. Due to the biological noise, simultaneous spike emission is registered within a finite coincidence window. Established methods of counting are: (i) partitioning the temporal axis into disjunct bins and (ii) integrating the counts of precise coincidences over multiple relative temporal shifts of the two spike trains. Here, we rigorously analyze for both methods the effectiveness of dithering in destroying precise coincidences. Closed form expressions and bounds are derived for the case where the dither range equals the coincidence window. In this situation disjunct binning detects half of the original coincidences, the multiple shift method recovers three quarters. Thus, only a dither range much larger than the detection window qualifies as a generator of suitable surrogates.

Keywords

multi-channel recording spike train Monte-Carlo surrogate data correlation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Riehle, A., Grün, S., Diesmann, M., Aertsen, A.: Spike synchronization and rate modulation differentially involved in motor cortical function. Science 278(5345), 1950–1953 (1997)CrossRefGoogle Scholar
  2. 2.
    Nowak, L.G., Munk, M.H., Nelson, J.I., James, A., Bullier, J.: Structural basis of cortical synchronization. I. Three types of interhemispheric coupling. J. Neurophysiol. 74(6), 2379–2400 (1995)Google Scholar
  3. 3.
    Grün, S., Diesmann, M., Aertsen, A.: ‘Unitary events’ in multiple single-neuron spiking activity: I. Detection and significance. Neural Comput. 14(1), 43–80 (2002)MATHCrossRefGoogle Scholar
  4. 4.
    Pipa, G., Grün, S.: Non-parametric significance estimation of joint-spike events by shuffling and resampling. Neurocomputing 52–54, 31–37 (2003)CrossRefGoogle Scholar
  5. 5.
    Ikegaya, Y., Aaron, G., Cossart, R., Aronov, D., Lampl, I., Ferster, D., Yuste, R.: Synfire chains and cortical songs: temporal modules of cortical activity. Science 5670(304), 559–564 (2004)CrossRefGoogle Scholar
  6. 6.
    Hatsopoulos, N., Geman, S., Amarasingham, A., Bienenstock, E.: At what time scale does the nervous system operate? Neurocomputing 52–54, 25–29 (2003)CrossRefGoogle Scholar
  7. 7.
    Pipa, G., Diesmann, M., Grün, S.: Significance of joint-spike events based on trial-shuffling by efficient combinatorial methods. Complexity 8(4), 79–86 (2003)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Grün, S., Riehle, A., Diesmann, M.: Effect of cross-trial nonstationarity on joint-spike events. Biol. Cybern. 88(5), 335–351 (2003)MATHCrossRefGoogle Scholar
  9. 9.
    Pipa, G., Riehle, A., Grün, S.: Validation of task-related excess of spike coincidences based on neuroxidence. Neurocomputing 70(10–12), 2064–2068 (2007)CrossRefGoogle Scholar
  10. 10.
    Davies, R.M., Gerstein, G.L., Baker, S.N.: Measurement of time-dependent changes in the irregularity of neuronal spiking. J. Neurophysiol. 96, 906–918 (2006)CrossRefGoogle Scholar
  11. 11.
    Date, A., Bienenstock, E., Geman, S.: On the temporal resolution of neural activity. Technical report, Divison of Applied Mathematics, Brown University (1998)Google Scholar
  12. 12.
    Abeles, M., Gat, I.: Detecting precise firing sequences in experimental data. J. Neurosci. Methods 107(1–2), 141–154 (2001)CrossRefGoogle Scholar
  13. 13.
    Maldonado, P., Babul, C., Singer, W., Rodriguez, E., Berger, D., Grün, S.: Dissociation between discharge rates and synchrony in primary visual cortex of monkeys viewing natural images (submitted)Google Scholar
  14. 14.
    Gerstein, G.L.: Searching for significance in spatio-temporal firing patterns. Acta Neurobiol. Exp (Wars.) 2(64), 203–207 (2004)Google Scholar
  15. 15.
    Grün, S., Diesmann, M., Grammont, F., Riehle, A., Aertsen, A.: Detecting unitary events without discretization of time. J. Neurosci. Methods 94(1), 67–79 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Antonio Pazienti
    • 1
  • Markus Diesmann
    • 1
  • Sonja Grün
    • 1
    • 2
  1. 1.Computational Neuroscience Group, RIKEN Brain Science Institute, WakoJapan
  2. 2.Bernstein Center for Computational Neuroscience, BerlinGermany

Personalised recommendations