Nymble: Anonymous IP-Address Blocking

  • Peter C. Johnson
  • Apu Kapadia
  • Patrick P. Tsang
  • Sean W. Smith
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4776)

Abstract

Anonymizing networks such as Tor allow users to access Internet services privately using a series of routers to hide the client’s IP address from the server. Tor’s success, however, has been limited by users employing this anonymity for abusive purposes, such as defacing Wikipedia. Website administrators rely on IP-address blocking for disabling access to misbehaving users, but this is not practical if the abuser routes through Tor. As a result, administrators block all Tor exit nodes, denying anonymous access to honest and dishonest users alike. To address this problem, we present a system in which (1) honest users remain anonymous and their requests unlinkable; (2) a server can complain about a particular anonymous user and gain the ability to blacklist the user for future connections; (3) this blacklisted user’s accesses before the complaint remain anonymous; and (4) users are aware of their blacklist status before accessing a service. As a result of these properties, our system is agnostic to different servers’ definitions of misbehavior.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: A practical and provably secure coalition-resistant group signature scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 255–270. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. In: Menezes, A.J. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)Google Scholar
  4. 4.
    Brands, S.: Untraceable off-line cash in wallets with observers (extended abstract). In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 302–318. Springer, Heidelberg (1994)Google Scholar
  5. 5.
    Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.: How to win the clonewars: efficient periodic n-times anonymous authentication. In: Juels, A., Wright, R.N., De Capitani di Vimercati, S. (eds.) ACM Conference on Computer and Communications Security, pp. 201–210. ACM Press, New York (2006)Google Scholar
  6. 6.
    Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Compact e-cash. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)Google Scholar
  7. 7.
    Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)Google Scholar
  9. 9.
    Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Communications of the ACM 4(2) (1981)Google Scholar
  10. 10.
    Chaum, D.: Blind signatures for untraceable payments. In: CRYPTO, pp. 199–203 (1982)Google Scholar
  11. 11.
    Chaum, D.: Showing credentials without identification transfeering signatures between unconditionally unlinkable pseudonyms. In: Seberry, J., Pieprzyk, J.P. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 246–264. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  12. 12.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  13. 13.
    Chen, L.: Access with pseudonyms. In: Dawson, E.P., Golić, J.D. (eds.) Cryptography: Policy and Algorithms. LNCS, vol. 1029, pp. 232–243. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    Damgård, I.: Payment systems and credential mechanisms with provable security against abuse by individuals. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 328–335. Springer, Heidelberg (1990)Google Scholar
  15. 15.
    Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation Onion Router. In: Usenix Security Symposium, pp. 303–320 (2004)Google Scholar
  16. 16.
    Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, M.F., Rowstron, A. (eds.) IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002)Google Scholar
  17. 17.
    Holt, J.E., Seamons, K.E.: Nym: Practical pseudonymity for anonymous networks. Internet Security Research Lab Technical Report 2006-4, Brigham Young University (June 2006)Google Scholar
  18. 18.
    Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    NIST. FIPS 186-2: Digital signature standard (DSS). Technical report, National Institute of Standards and Technology (NIST) (2000), http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf
  21. 21.
    NIST. FIPS 180-2: Secure hash standard (SHS). Technical report, National Institute of Standards and Technology (NIST) (2001), http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
  22. 22.
    NIST. FIPS 197: Announcing the advanced encryption standard (AES). Technical report, National Institute of Standards and Technology (NIST) (2001), http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
  23. 23.
    NIST. FIPS 198: The keyed-hash message authentication code (HMAC). Technical report, National Institute of Standards and Technology (NIST) (2002), http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf
  24. 24.
    Ohkubo, M., Suzuki, K., Kinoshita, S.: Cryptographic approach to “privacy-friendly” tags. In: RFID Privacy Workshop, MIT, MA, USA (November 2003)Google Scholar
  25. 25.
    Reiter, M.K., Rubin, A.D.: Crowds: Anonymity for Web Transactions. ACM Transactions on Information and System Security 1(1), 66–92 (1998)CrossRefGoogle Scholar
  26. 26.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  27. 27.
    Syverson, P.F., Stubblebine, S.G., Goldschlag, D.M.: Unlinkable serial transactions. In: Hirschfeld, R. (ed.) FC 1997. LNCS, vol. 1318, pp. 39–56. Springer, Heidelberg (1997)Google Scholar
  28. 28.
    Teranishi, I., Furukawa, J., Sako, K.: k-times anonymous authentication (extended abstract). In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 308–322. Springer, Heidelberg (2004)Google Scholar
  29. 29.
    Tsang, P.P., Kapadia, A., Smith, S.W.: Anonymous IP-address blocking in tor with trusted computing (work-in-progress). In: The Second Workshop on Advances in Trusted Computing (WATC ’06 Fall) (November 2006)Google Scholar
  30. 30.
    von Ahn, L., Bortz, A., Hopper, N.J., O’Neill, K.: Selectively traceable anonymity. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp. 208–222. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Peter C. Johnson
    • 1
  • Apu Kapadia
    • 1
    • 2
  • Patrick P. Tsang
    • 1
  • Sean W. Smith
    • 1
  1. 1.Department of Computer Science, Dartmouth College, Hanover, NH 03755USA
  2. 2.Institute for Security Technology Studies, Dartmouth College, Hanover, NH 03755USA

Personalised recommendations