Efficient Mining Under Rich Constraints Derived from Various Datasets

  • Arnaud Soulet
  • Jiří Kléma
  • Bruno Crémilleux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4747)


Mining patterns under many kinds of constraints is a key point to successfully get new knowledge. In this paper, we propose an efficient new algorithm Music-dfs which soundly and completely mines patterns with various constraints from large data and takes into account external data represented by several heterogeneous datasets. Constraints are freely built of a large set of primitives and enable to link the information scattered in various knowledge sources. Efficiency is achieved thanks to a new closure operator providing an interval pruning strategy applied during the depth-first search of a pattern space. A transcriptomic case study shows the effectiveness and scalability of our approach. It also demonstrates a way to employ background knowledge, such as free texts or gene ontologies, in the discovery of meaningful patterns.


constraint-based mining transcriptomic data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pp. 432–444 (1994)Google Scholar
  2. 2.
    Bonchi, F., Lucchese, C.: Pushing tougher constraints in frequent pattern mining. In: Ho et al. pp. 114–124 [7]Google Scholar
  3. 3.
    Borgelt, C.: Efficient implementations of Apriori and Eclat. In: Goethals, Zaki [6]Google Scholar
  4. 4.
    Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation of boolean data for the approximation of frequency queries. Data Mining and Knowledge Discovery journal 7(1), 5–22 (2003)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bucila, C., Gehrke, J., Kifer, D., White, W.M.: Dualminer: A dual-pruning algorithm for itemsets with constraints. Data Min. Knowl. Discov. 7(3), 241–272 (2003)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Goethals, B., Zaki, M.J. (eds.): FIMI ’03, Frequent Itemset Mining Implementations, Proceedings of the ICDM 2003 Workshop on Frequent Itemset Mining Implementations, 19 December 2003, Melbourne, Florida, USA, CEUR Workshop Proceedings, vol. 90 (2003),
  7. 7.
    Ho, T.-B., Cheung, D., Liu, H. (eds.): Advances in Knowledge Discovery and Data Mining, PAKDD 2005. LNCS (LNAI), vol. 3518. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Hébert, C., Crémilleux, B.: Mining frequent δ-free patterns in large databases. In: Hoffmann, A., Motoda, H., Scheffer, T. (eds.) DS 2005. LNCS (LNAI), vol. 3735, pp. 124–136. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Jeudy, B., Rioult, F.: Database transposition for constrained (closed) pattern mining. In: Goethals, B., Siebes, A. (eds.) KDID 2004. LNCS, vol. 3377, pp. 89–107. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Kléma, J., Soulet, A., Crémilleux, B., Blachon, S., Gandrillon, O.: Mining plausible patterns from genomic data. In: Lee, D., Nutter, B., Antani, S., Mitra, S., Archibald, J. (eds.) CBMS 2006, the 19th IEEE International Symposium on Computer-Based Medical Systems, Salt Lake City, Utah, pp. 183–188. IEEE Computer Society Press, Los Alamitos (2006)CrossRefGoogle Scholar
  11. 11.
    Liu, G., Lu, H., Yu, J.X., Wei, W., Xiao, X.: AFOPT: An efficient implementation of pattern growth approach. In: Goethals, Zaki [6]Google Scholar
  12. 12.
    Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)CrossRefGoogle Scholar
  13. 13.
    Orlando, S., Lucchese, C., Palmerini, P., Perego, R., Silvestri, F.: kDCI: a multi-strategy algorithm for mining frequent sets. In: Goethals, Zaki [6]Google Scholar
  14. 14.
    Pan, F., Cong, G., Tung, A.K.H., Yang, Y., Zaki, M.J.: CARPENTER: finding closed patterns in long biological datasets. In: Proceedings of the 9th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD 2003), Washington, DC, USA, pp. 637–642. ACM Press, New York (2003)CrossRefGoogle Scholar
  15. 15.
    Pasquier, N., Bastide, Y., Taouil, T., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)Google Scholar
  16. 16.
    Pei, J., Han, J., Lakshmanan, L.V.S.: Mining frequent item sets with convertible constraints. In: ICDE, pp. 433–442. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  17. 17.
    Rioult, F., Robardet, C., Blachon, S., Crémilleux, B., Gandrillon, O., Boulicaut, J.-F.: Mining concepts from large sage gene expression matrices. In: Boulicaut, J.-F., Dzeroski, S. (eds.) KDID, pp. 107–118. Rudjer Boskovic Institute, Zagreb, Croatia (2003)Google Scholar
  18. 18.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing Management 24(5), 513–523 (1988)CrossRefGoogle Scholar
  19. 19.
    Soulet, A.: Un cadre générique de découverte de motifs sous contraintes fondées sur des primitives. PhD thesis, Université de Caen Basse-Normandie, France, 2006 (to appear)Google Scholar
  20. 20.
    Soulet, A., Crémilleux, B.: An efficient framework for mining flexible constraints. In: Ho,, et al. (eds.), pp. 661–671 (2005) [7]Google Scholar
  21. 21.
    Soulet, A., Crémilleux, B.: Exploiting Virtual Patterns for Automatically Pruning the Search Space. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 98–109. Springer, Heidelberg (2006)Google Scholar
  22. 22.
    Stadler, B.M.R., Stadler, P.F.: Basic properties of filter convergence spaces (2002)Google Scholar
  23. 23.
    Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: Efficient mining algorithms for frequent/closed/maximal itemsets. In: Bayardo Jr., R.J., Goethals, B., Zaki, M.J. (eds.) FIMI. CEUR Workshop Proceedings, vol. 126 (2004),
  24. 24.
    Velculescu, V., Zhang, L., Vogelstein, B., Kinzler, K.: Serial analysis of gene expression. Science 270, 484–487 (1995)CrossRefGoogle Scholar
  25. 25.
    Zaïane, O.R., El-Hajj, M.: COFI-tree mining: A new approach to pattern growth with reduced candidacy generation. In: Goethals, Zaki [6]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Arnaud Soulet
    • 1
  • Jiří Kléma
    • 1
    • 2
  • Bruno Crémilleux
    • 1
  1. 1.GREYC, Université de Caen, Campus Côte de Nacre, F-14032 Caen CédexFrance
  2. 2.Department of Cybernetics, Czech Technical University, Prague 

Personalised recommendations