Advertisement

LUMINES Strategies

  • Greg Aloupis
  • Jean Cardinal
  • Sébastien Collette
  • Stefan Langerman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4630)

Abstract

We analyze a new popular video-game called Lumines, which was developed by Sony for the PSP platform. It involves a sequence of bichromatic 2×2 blocks that fall in a grid and must be shifted or rotated by the player before they land. Patterns of monochromatic 2×2 blocks in the terrain are regularly deleted. The primary goal is to contain the terrain within a fixed height and, if possible, clear the grid.

We deal with questions such as: (1) Can the game be played indefinitely? and (2) Can all terrains be eliminated? We examine how answers to these questions depend on the size of the grid and the rate at which blocks are deleted.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azar, Y., Epstein, L.: On Two-Dimensional Packing. Journal of Algorithms 25(2), 290–310 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Breukelaar, R., Demaine, E.D., Hohenberger, S., Hoogeboom, H.J., Kosters, W.A., Liben-Nowell, D.: T\(\textsc{etris}\) is Hard, Even to Approximate. International Journal of Computational Geometry and Applications 14, 41–68 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brzutowski, J.: Can You Win at T\(\textsc{etris}\)? Master’s thesis, The University of British Columbia (1992)Google Scholar
  4. 4.
    Burgiel, H.: How to Lose at T\(\textsc{etris}\). Mathematical Gazette 81, 194–200 (1997)CrossRefGoogle Scholar
  5. 5.
    Demaine, E.D.: Playing Games with Algorithms: Algorithmic Combinatorial Game Theory. In: Sgall, J., Pultr, A., Kolman, P. (eds.) MFCS 2001. LNCS, vol. 2136, pp. 18–32. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Demaine, E.D., Hohenberger, S., Liben-Nowell, D.: T\(\textsc{etris}\) is Hard, Even to Approximate. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 351–363. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Hoogeboom, H.J., Kosters, W.A.: The Theory of T\(\textsc{etris}\). Nieuwsbrief van de Nederlandse Vereniging voor Theoretische Informatica 9, 14–21 (2005)Google Scholar
  8. 8.
    Tucker, R.: T\(\textsc{etris}\). Eureka Magazine 51, 34–35 (1992)Google Scholar
  9. 9.
    Whitelaw, C.: LUMINES: Killing the Fun (2005), http://caseyporn.com/blog/archives/000818.html
  10. 10.
    Whitelaw, C.: LUMINES: Killing the Fun, Part Two (2005), http://caseyporn.com/blog/archives/000819.html
  11. 11.
    Wikipedia contributors: LUMINES. Wikipedia, The Free Encyclopedia (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Greg Aloupis
    • 1
  • Jean Cardinal
    • 1
  • Sébastien Collette
    • 1
  • Stefan Langerman
    • 1
  1. 1.Département d’Informatique, Université Libre de Bruxelles, BrusselsBelgium

Personalised recommendations