Advertisement

Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics

  • Laurent Dupont
  • Michael Hemmer
  • Sylvain Petitjean
  • Elmar Schömer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4698)

Abstract

We present a complete, exact and efficient implementation to compute the adjacency graph of an arrangement of quadrics, i.e. surfaces of algebraic degree 2. This is a major step towards the computation of the full 3D arrangement. We enhanced an implementation for an exact parameterization of the intersection curves of two quadrics, such that we can compute the exact parameter value for intersection points and from that the adjacency graph of the arrangement. Our implementation is complete in the sense that it can handle all kinds of inputs including all degenerate ones, i.e. singularities or tangential intersection points. It is exact in that it always computes the mathematically correct result. It is efficient measured in running times, i.e. it compares favorably to the only previous implementation.

Keywords

Intersection Point Interval Arithmetic Intersection Curve Quadric Surface Implicit Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Proc. 2nd GI Conf. on Automata Theory and Formal Languages. LNCS, vol. 6, pp. 134–183. Springer, Berlin (1975) Reprinted with corrections in: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 85–121. Springer, Heidelberg (1998)Google Scholar
  2. 2.
    Schömer, E., Wolpert, N.: An exact and efficient approach for computing a cell in an arrangement of quadrics (Special Issue on Robust Geometric Applications and their Implementations). Computational Geometry: Theory and Applications 33, 65–97 (2006)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Mourrain, B., Técourt, J.-P., Teillaud, M.: Sweeping of an arrangement of quadrics in 3D (Special issue, 19th European Workshop on Computational Geometry). Computational Geometry: Theory and Applications 30, 145–164 (2005)zbMATHMathSciNetGoogle Scholar
  4. 4.
    Berberich, E., Hemmer, M., Kettner, L., Schömer, E., Wolpert, N.: An exact, complete and efficient implementation for computing planar maps of quadric intersection curves. In: SCG 2005. Proceedings of the twenty-first annual symposium on Computational geometry, pp. 99–106. ACM Press, New York, USA (2005)CrossRefGoogle Scholar
  5. 5.
    Dupont, L., Lazard, D., Lazard, S., Petitjean, S.: Near-optimal parameterization of the intersection of quadrics, parts I+II+III (accepted). J. Symbolic Computation  (2007)Google Scholar
  6. 6.
    Stolfi, J.: Oriented Projective Geometry: A Framework for Geometric Computations. Academic Press, New York (1991)zbMATHGoogle Scholar
  7. 7.
    Yun, D.Y.Y.: On square-free decomposition algorithms. In: SYMSAC 1976. Proceedings of the third ACM symposium on Symbolic and algebraic computation, pp. 26–35. ACM Press, New York, USA (1976)CrossRefGoogle Scholar
  8. 8.
    Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.: A descartes algorithm for polynomials with bit-stream coefficients. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 138–149. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Lazard, S., Pearanda, L.M., Petitjean, S.: Intersecting quadrics : An efficient and exact implementation. In: ACM Symposium on Computational Geometry - SoCG 2004, Brooklyn, NY, ACM Press, New York (2004)Google Scholar
  10. 10.
    Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Kettner, L., Mehlhorn, K., Reichel, J., Schmitt, S., Schömer, E., Wolpert, N.: EXACUS: Efficient and exact algorithms for curves and surfaces. In: 13th Annual European Symposium on Algorithms, pp. 155–166. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Austern, M.H.: Generic Programming and the STL. Addison-Wesley, Reading (1998)Google Scholar
  12. 12.
    Brönnimann, H., Kettner, L., Schirra, S., Veltkamp, R.: Applications of the generic programming paradigm in the design of CGAL. In: Jazayeri, M., Musser, D.R., Loos, R.G.K. (eds.) Generic Programming. LNCS, vol. 1766, pp. 206–217. Springer, Heidelberg (2000)Google Scholar
  13. 13.
    Hemmer, M., Kettner, L., Schömer, E.: Effects of a modular filter on geometric applications. Technical Report ECG-TR-363111-01, MPI Saarbrücken (2004)Google Scholar
  14. 14.
    Brown, W.S.: The subresultant PRS algorithm. ACM Trans. Math. Softw. 4(3), 237–249 (1978)zbMATHCrossRefGoogle Scholar
  15. 15.
    Collins, G.E., Akritas, A.-G.: Polynomial real root isolation using Descartes’ rule of sign. In: SYMSAC, pp. 272–275 (1976)Google Scholar
  16. 16.
    Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. C-28(9), 643–647 (1979)CrossRefGoogle Scholar
  17. 17.
    Brown, W.S.: On euclid’s algorithm and the computation of polynomial greatest common divisors. J. ACM 18, 478–504 (1971)zbMATHCrossRefGoogle Scholar
  18. 18.
    Langemyr, S.M.L.: The computation of polynomial GCD’s over an algebraic number field. J. Symbolic Computation 8, 429–448 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Granados, M., Hachenberger, P., Hert, S., Kettner, L., Mehlhorn, K., Seel, M.: Boolean operations on 3D selective nef complexes: Data structure, algorithms, and implementation. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 654–666. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Laurent Dupont
    • 1
  • Michael Hemmer
    • 2
  • Sylvain Petitjean
    • 1
  • Elmar Schömer
    • 2
  1. 1.LORIA, NancyFrance
  2. 2.Johannes Gutenberg-Universität, Institut für Informatik, MainzGermany

Personalised recommendations