Farthest-Polygon Voronoi Diagrams

  • Otfried Cheong
  • Hazel Everett
  • Marc Glisse
  • Joachim Gudmundsson
  • Samuel Hornus
  • Sylvain Lazard
  • Mira Lee
  • Hyeon-Suk Na
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4698)

Abstract

Given a family of k disjoint connected polygonal sites of total complexity n, we consider the farthest-site Voronoi diagram of these sites, where the distance to a site is the distance to a closest point on it. We show that the complexity of this diagram is O(n), and give an O(n log3n) time algorithm to compute it.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aurenhammer, F., Klein, R.: Voronoi diagrams. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry. pp. 201–290. Elsevier Science Publishers B.V. North-Holland, Amsterdam (2000)Google Scholar
  2. 2.
    Aurenhammer, F., Drysdale, R.L.S., Krasser, H.: Farthest line segment Voronoi diagrams. Information Processing Letters 100, 220–225 (2006)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: The farthest color Voronoi diagram and related problems. In: Abstracts 17th European Workshop Comput. Geom., pp. 113–116. Freie Universität, Berlin (2001)Google Scholar
  4. 4.
    Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: Smallest color-spanning objects. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 278–289. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces and its applications. Discrete Comput. Geom. 9, 267–291 (1993)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York (1995)MATHGoogle Scholar
  7. 7.
    van Kreveld, M., Schlechter, T.: Automated label placement for groups of islands. In: Proc. of the 22nd International Cartographic Conference (2005)Google Scholar
  8. 8.
    Mehlhorn, K., Meiser, S., Rasch, R.: Furthest site abstract Voronoi diagrams. Int. J. Comput. Geom. & Appl. 11(6), 583–616 (2001)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Jadhav, S., Mukhopadhyay, A., Bhattacharya, B.K.: An optimal algorithm for the intersection radius of a set of convex polygons. J. Algorithms 20, 244–267 (1996)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fortune, S.J.: A sweepline algorithm for Voronoi diagrams. Algorithmica 2, 153–174 (1987)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Edelsbrunner, H., Guibas, L.J., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM Journal on Computing 15(2) (1986)Google Scholar
  12. 12.
    Mulmuley, K.: A fast planar partition algorithm, I. J. Symbolic Comput. 10(3-4), 253–280 (1990)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin, Germany (2000)MATHGoogle Scholar
  14. 14.
    Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. J. ACM 30(4), 852–865 (1983)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Otfried Cheong
    • 1
  • Hazel Everett
    • 2
  • Marc Glisse
    • 2
  • Joachim Gudmundsson
    • 3
  • Samuel Hornus
    • 1
  • Sylvain Lazard
    • 2
  • Mira Lee
    • 1
  • Hyeon-Suk Na
    • 4
  1. 1.Dept. of Computer Science, KAIST, DaejeonKorea
  2. 2.LORIA – INRIA Lorraine, Université Nancy 2, NancyFrance
  3. 3.National ICT Australia Ltd., SydneyAustralia
  4. 4.School of Computing, Soongsil University, SeoulKorea

Personalised recommendations