Stackelberg Strategies for Atomic Congestion Games

  • Dimitris Fotakis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4698)

Abstract

We investigate the effectiveness of Stackelberg strategies for atomic congestion games with unsplittable demands. In our setting, only a fraction of the players are selfish, while the rest are willing to follow a predetermined strategy. A Stackelberg strategy assigns the coordinated players to appropriately selected strategies trying to minimize the performance degradation due to the selfish players. We consider two orthogonal cases, namely linear congestion games with arbitrary strategies and congestion games on parallel links with arbitrary non-negative and non-decreasing latency functions. We restrict our attention to pure Nash equilibria and derive strong upper and lower bounds on the Price of Anarchy under different Stackelberg strategies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aland, S., Dumrauf, D., Gairing, M., Monien, B., Schoppmann, F.: Exact Price of Anarchy for Polynomial Congestion Games. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 218–229. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Awerbuch, B., Azar, Y., Epstein, A.: The Price of Routing Unsplittable Flow. In: STOC 2005, pp. 57–66 (2005)Google Scholar
  3. 3.
    Christodoulou, G., Koutsoupias, E.: The Price of Anarchy of Finite Congestion Games. In: STOC 2005, pp. 67–73 (2005)Google Scholar
  4. 4.
    Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: Selfish Routing in Capacitated Networks. Mathematics of Operations Research 29(4), 961–976 (2004)MATHCrossRefGoogle Scholar
  5. 5.
    Correa, J.R., Stier-Moses, N.E.: Stackelberg Routing in Atomic Network Games. Technical Report DRO-2007-03, Columbia Bussiness School (2007)Google Scholar
  6. 6.
    Czumaj, A.: Selfish Routing on the Internet. In: Leung, J. (ed.) Handbook of Scheduling: Algorithms, Models, and Performance Analysis, CRC Press, Boca Raton, USA (2004)Google Scholar
  7. 7.
    Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: Nash Equilibria in Discrete Routing Games with Convex Latency Functions. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 645–657. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Gairing, M., Lücking, T., Monien, B., Tiemann, K.: Nash Equilibria, the Price of Anarchy and the Fully Mixed Nash Equilibrium Conjecture. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 51–65. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Kaporis, A.C., Spirakis, P.G.: The Price of Optimum in Stackelberg Games on Arbitrary Single Commodity Networks and Latency Functions. In: SPAA 2006, pp. 19–28 (2006)Google Scholar
  10. 10.
    Karakostas, G., Kolliopoulos, S.: Stackelberg Strategies for Selfish Routing in General Multicommodity Networks. Technical Report AdvOL 2006/08, McMaster University (2006)Google Scholar
  11. 11.
    Korilis, Y.A., Lazar, A.A., Orda, A.: Achieving Network Optima Using Stackelberg Routing Strategies. IEEE/ACM Transactions on Networking 5(1), 161–173 (1997)CrossRefGoogle Scholar
  12. 12.
    Koutsoupias, E., Papadimitriou, C.: Worst-case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Kumar, V.S.A., Marathe, M.V.: Improved Results for Stackelberg Strategies. In: Widmayer, P., Triguero, F., Morales, R., Hennessy, M., Eidenbenz, S., Conejo, R. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 776–787. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Lücking, T., Mavronicolas, M., Monien, B., Rode, M.: A New Model for Selfish Routing. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 547–558. Springer, Heidelberg (2004)Google Scholar
  15. 15.
    Rosenthal, R.W.: A Class of Games Possessing Pure-Strategy Nash Equilibria. International Journal of Game Theory 2, 65–67 (1973)MATHCrossRefGoogle Scholar
  16. 16.
    Roughgarden, T.: The Price of Anarchy is Independent of the Network Topology. Journal of Computer and System Sciences 67(2), 341–364 (2003)MATHCrossRefGoogle Scholar
  17. 17.
    Roughgarden, T.: Stackelberg Scheduling Strategies. SIAM Journal on Computing 33(2), 332–350 (2004)MATHCrossRefGoogle Scholar
  18. 18.
    Sharma, Y., Williamson, D.P.: Stackelberg Thresholds in Network Routing Games. In: EC 2007 (to appear, 2007)Google Scholar
  19. 19.
    Swamy, C.: The Effectiveness of Stackelberg Strategies and Tolls for Network Congestion Games. In: SODA 2007 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Dimitris Fotakis
    • 1
  1. 1.Dept. of Information and Communication Systems Engineering, University of the Aegean, 83200 SamosGreece

Personalised recommendations