Advertisement

New Results on Minimax Regret Single Facility Ordered Median Location Problems on Networks

  • Justo Puerto
  • Antonio M. Rodriguez-Chia
  • Arie Tamir
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4698)

Abstract

We consider the single facility ordered median location problem with uncertainty in the parameters (weights) defining the objective function. We study two cases. In the first case the uncertain weights belong to a region with a finite number of extreme points, and in the second case they must also satisfy some order constraints and belong to some box, (convex case). To deal with the uncertainty we apply the minimax regret approach, providing strongly polynomial time algorithms to solve these problems.

Keywords

Analysis of algorithms networks facility location 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows. Prentice Hall, New Jersey (1993)Google Scholar
  2. 2.
    Aissi, H., Bazgan, C., Vanderpooten, D.: Approximation of min-max and min-max regret versions of some combinatorial optimization problems. Eur. J. Oper. Res. 179, 281–290 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Averbakh, I.: On the complexity of a class of combinatorial optimization problems with uncertainty. Math. Program. 90, 263–272 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Averbakh, I., Berman, O.: An improved algorithm for the minmax regret median problem on a tree. Networks 41(2), 97–103 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Averbakh, I., Berman, O.: On the complexity of minmax regret linear programming. Eur. J. Oper. Res. 160, 227–231 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chaudhuri, S., Zaroliagis, C.: Shortest paths in digraphs of small treewidth. Part I: Sequential algorithms. Algorithmica. 27, 212–226Google Scholar
  7. 7.
    Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. J. Assoc. Comput. Mach. 34, 200–208 (1987)MathSciNetGoogle Scholar
  8. 8.
    Conde, E.: An improved algorithm for selecting p items with uncertain returns according to the minmax-regret criterion. Math. Program 100, 345–353 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Francis, R.L., Lowe, T.J., Tamir, A.: Aggregation error bounds for a class of location models. Oper. Res. 48, 294–307 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Henzinger, M.R., Klein, P., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs. Journal of Computers and System Sciences 55, 3–23 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hershberger, J., Suri, S.: Off-line maintenance of planar configurations. J. Algorithms 21(3), 453–475 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Kouvelis, P., Yu, G.: Robust discrete optimization and its applications. Kluwer Academic Publishers, Dordrecht (1997)zbMATHGoogle Scholar
  13. 13.
    Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. J. Assoc. Comput. Mach. 30, 852–865 (1983)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Megiddo, N.: Linear-time algorithms for linear programming in \(\mathbb{{R}}^3\) and related problems. SIAM J. Comput. 12, 759–776 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Nickel, S., Puerto, J.: Location Theory: A unified approach. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Puerto, J., Rodriguez-Chia, A.M., Tamir, A.: Minimax regret single facility ordered median location problems on networks. Preprint Facultad de Matemáticas, Universidad de Sevilla (2007)Google Scholar
  17. 17.
    Ravi, R., Sinha, A.: Hedging uncertainty: approximation algorithms for stochastic optimization problems. Math. Program. 108, 97–114 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Tamir, A.: On the solution value of the continuous p-center location problem on a graph. Math. Oper. Res. 12, 340–349 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Tamir, A.: The k-centrum multi-facility location problem. Discrete Appl. Math. 109, 292–307 (2000)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Justo Puerto
    • 1
  • Antonio M. Rodriguez-Chia
    • 2
  • Arie Tamir
    • 3
  1. 1.Facultad de Matemáticas. Universidad de Sevilla 
  2. 2.Facultad de Ciencias. Universidad de Cádiz 
  3. 3.School of Mathematical Sciences. Tel Aviv University 

Personalised recommendations