Hybrid Local Search Techniques for the Resource-Constrained Project Scheduling Problem

  • Igor Pesek
  • Andrea Schaerf
  • Janez Žerovnik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4771)

Abstract

This paper proposes a local search algorithm that makes use of a complex neighborhood relation based on a hybridization with a constructive heuristics for the classical resource-constrained project scheduling problem (RCPSP).

We perform an experimental analysis to tune the parameters of our algorithm and to compare it with a tabu search based on a combination of neighborhood relations borrowed from the literature. Finally, we show that our algorithm is also competitive with the ones reported in the literature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baar, T., Brucker, P., Knust, S.: Tabu search algorithms and lower bounds for the resource-constrained project scheduling problem. In: Voss, S., Martello, S., Osman, I., Roucairol, C. (eds.) Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization, pp. 1–18. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  2. 2.
    Blazewicz, J., Lenstra, J., Kan, A.R.: Scheduling subject to resource constraints: Classification and complexity. Discrete Applied Mathematics 5, 11–24 (1983)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Brest, J., Žerovnik, J.: An approximation algorithm for the asymmetric traveling salesman problem. Ricerca Operativa 28, 59–67 (1999)Google Scholar
  4. 4.
    Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling: Notation, classification, models, and methods. European Journal of Operational Research 112(1), 3–41 (1999)MATHCrossRefGoogle Scholar
  5. 5.
    Brucker, P., Knust, S., Schoo, A., Thiele, O.: A branch and bound algorithm for the resource-constrained project scheduling problem. European Journal of Operational Research 107(2), 272–288 (1998)MATHCrossRefGoogle Scholar
  6. 6.
    Christian, A., Michelon, P., Reusser, S.: Insertion techniques for static and dynamic resource-constrained project scheduling. European Journal of Operational Research 149, 249–267 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Di Gaspero, L., Schaerf, A.: EasyLocal++: An object-oriented framework for flexible design of local search algorithms. Software—Practice and Experience 33(8), 733–765 (2003)CrossRefGoogle Scholar
  8. 8.
    Gendreau, M., Hertz, A., Laporte, G., Stan, M.: A generalized insertion heuristic for the traveling salesman problem with time windows. Operations Research 46(3), 330–335 (1998)MATHGoogle Scholar
  9. 9.
    Glover, F., Laguna, M.: Tabu search. Kluwer Academic Publishers, Dordrecht (1997)MATHGoogle Scholar
  10. 10.
    Hartmann, S., Kolisch, R.: Experimental evaulation of state-of-the-art heuristics for the resource-constrained project scheduling problem. European Journal of Operational Research 127(2), 394–407 (2000)MATHCrossRefGoogle Scholar
  11. 11.
    Hoos, H.H., Stützle, T.: Stochastic Local Search Foundations and Applications. Morgan Kaufmann Publishers, San Francisco, CA (USA) (2005)MATHGoogle Scholar
  12. 12.
    Kolisch, R., Hartmann, S.: Heuristic algorithms for solving the resource-constrained project scheduling problem - classification and computational analysis. In: Weglarz, J. (ed.) Handbook on recent advances in project scheduling, pp. 147–178. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  13. 13.
    Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research 174(1), 23–37 (2006)MATHCrossRefGoogle Scholar
  14. 14.
    Kolisch, R., Sprecher, A.: PSPLIB – a project scheduling library. European Journal of Operational Research 96(1), 205–216 (1997) Data available from http://129.187.106.231/psplib/ CrossRefGoogle Scholar
  15. 15.
    Mingozzi, A., Maniezzo, V., Ricciardelli, S., Bianco, L.: An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation. Management Science 44(5), 714–729 (1998)MATHCrossRefGoogle Scholar
  16. 16.
    Minton, S., Johnston, M.D., Philips, A.B., Laird, P.: Minimizing conflicts: a heuristic repair method for constraint satisfaction and scheduling problems. Artificial Intelligence 58, 161–205 (1992)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Özdamar, L., Ulusoy, G.: A survey on the resource-constrained project scheduling problem. IIE transactions 27(5), 574–586 (1995)CrossRefGoogle Scholar
  18. 18.
    Palpant, M., Artigues, C., Michelon, P.: Lssper: Solving the resource-constrained project scheduling problem with large neighbourhood search. Annals of Operations Research 131(1-4), 237–257 (2004)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Pesek, I., Žerovnik, J.: Best insertion algorithm for resource-constrained project scheduling problem (preprint, 2006) available on http://arxiv.org/abs/0705.2137v1
  20. 20.
    R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2005), ISBN 3-900051-07-0.Google Scholar
  21. 21.
    Solomon, M.M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research 35(2), 254–265 (1987)MATHMathSciNetGoogle Scholar
  22. 22.
    Valls, V., Quintanilla, S., Ballestín, F.: Resource-constrained project scheduling: A critical activity reordering heuristic. European Journal of Operational Research 149, 282–301 (2003)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1, 80–83 (1945)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Igor Pesek
    • 1
  • Andrea Schaerf
    • 2
  • Janez Žerovnik
    • 1
    • 3
  1. 1.IMFM, Jadranska 19, 1000 LjubljanaSlovenia
  2. 2.DIEGM, University of Udine, via delle Scienze 208, 33100 UdineItaly
  3. 3.FS, University of Maribor, Smetanova 17, 2000 MariborSlovenia

Personalised recommendations