Hybrid Numerical Optimization for Combinatorial Network Problems

  • Markus Chimani
  • Maria Kandyba
  • Mike Preuss
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4771)

Abstract

We discuss a general approach to hybridize traditional construction heuristics for combinatorial optimization problems with numerical based evolutionary algorithms. Therefore, we show how to augment a construction heuristic with real-valued parameters, called control values. An evolutionary algorithm for numerical optimization uses this enhanced heuristic to find assignments for these control values, which in turn enable the latter to find high quality solutions for the original combinatorial problem. Additionally to the actual optimization task, we thereby experimentally analyze the heuristic’s substeps.

Furthermore, after finding a good assignment for a specific instance set, we can use it for similar yet different problem instances, without the need of an additional time-consuming run of the evolutionary algorithm. This concept is of particular interest in the context of computing efficient bounds within Branch-and-Cut algorithms. We apply our approach to a real-world problem in network optimization, and present a study on its effectiveness.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, D.V., Beyer, H.-G.: A comparison of evolution strategies with other direct search methods in the presence of noise. Computational Optimization and Applications 24(1), 135–159 (2003)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Beyer, H.-G., Schwefel, H.-P.: Evolution strategies—A comprehensive introduction. Natural Computing 1, 3–52 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chimani, M., Kandyba, M., Mutzel, P.: A new ILP formulation for a 2-connected prize collecting steiner network problem. In: Proc. ESA 2007 (to appear, 2007)Google Scholar
  4. 4.
    de Jong, K.: Evolutionary Computation: A Unified Approach. MIT Press, Cambridge, MA (2006)MATHGoogle Scholar
  5. 5.
    Emmerich, M., Grötzner, M., Groß, B., Schütz, M.: Mixed-integer evolution strategy for chemical plant optimization with simulators. In: Evolutionary Design and Manufacture – Sel. papers ACDM 2000, pp. 55–67. Springer, Heidelberg (2000)Google Scholar
  6. 6.
    Mehlhorn, K.: A faster approximation for the steiner problem in graphs. Information Processing Letters 27, 125–128 (1988)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Talbi, E.-G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8(5), 541–564 (2002)CrossRefGoogle Scholar
  8. 8.
    Wagner, D., Raidl, G.R., Pferschy, U., Mutzel, P., Bachhiesl, P.: A multi-commodity flow approach for the design of the last mile in real-world fiber optic networks. In: Proc. GOR 2006, Springer, Heidelberg (2006)Google Scholar
  9. 9.
    Wagner, D., Raidl, G.R., Pferschy, U., Mutzel, P., Bachhiesl, P.: A Directed Cut for the Design of the Last Mile in Real-World Fiber Optic Networks. In: Proc. INOC 2007, pp. 103/1–6 (2007)Google Scholar
  10. 10.
    Wolsey, L.A.: Integer Programming. Wiley-Interscience, Chichester (1998)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Markus Chimani
    • 1
  • Maria Kandyba
    • 1
  • Mike Preuss
    • 1
  1. 1.Dortmund University, 44221 DortmundGermany

Personalised recommendations