General Conclusions – Sand Dune Deserts, Desertification, Rehabilitation and Conservation

  • S. -W. Breckle
  • A. Yair
  • M. Veste
Part of the Ecological Studies book series (ECOLSTUD, volume 200)

Moving sand dunes represent a natural phenomenon in most arid and hyper-arid sand deserts, such as the Sahara, Namib, Taklamakan and Rub'al Khali. The preconditions for large sand dunes or even extensive “sand seas” are, on the one hand, the geological situation with a large source of sand provided by the weathering of parent rocks and, on the other hand, the climate, which is normally very arid and exhibiting typically strong wind systems. These dune systems – e.g. in the Gobi, the Rub-al-Khali and the Namib – are typical sand deserts. The water regime of these sand deserts is rather favourable in comparison with that of adjacent rock, gravel or clay deserts. The biomass resulting from 1 mm of rainfall on sandy soils is 2.5 times higher than that produced on fine-texture soils (Le Houérou 1986). This can always be seen in some specific stands of plants, mostly in the stable dune valleys where eventually sometimes even water can be found. The mobility of these dune systems is controlled by the specific wind regime, which may cause different types of dune morphology and dune types (Bagnold 1941; Besler 1980; Lancaster 1982; Tsoar 1984; Tsoar and Møller 1986; Cooke et al. 1993).

There are also less arid deserts. These are found along desert margins or in the form of semi-deserts, where fixed sand dune systems start to become mobile for various reasons (Wang et al. 2006), mainly by overgrazing and trampling, together with firewood collection. In geological timescales, climate change can be a trigger for the reactivation of stable sand dunes (Lancaster 1987; Littmann 1988).

The Nizzana dunes are an example of dunes at a desert margin, more or less stable during the last centuries. They are very small in comparison with other sand dune areas but nevertheless a good example of where, on the one hand, the dynamics of desert ecosystems (as shown in previous chapters) and, on the other hand, the vulnerability of these systems and the problem of desertification as well as the necessary measures of rehabilitation can be studied. Thus, some comparisons with other, selected sand dune ecosystems, with their specific dynamics and threats, can be made but also some general conclusions can be drawn.


Sand Dune Soil Crust Surface Wind Speed Tengger Desert Sand Desert 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agakhanjanz OE, Breckle S-W (1993) Umweltsituation in der ehemaligen Sowjetunion. Naturwiss Rundsch 47:99–106Google Scholar
  2. Anderson P, Hoffman MT, Holmes PM (2004) The potential of Cephalophyllum inaequale (L. Bolus) for the restoration on degraded arid landscapes in Namaqualand, South Africa. Restoration Ecol 12:343–351CrossRefGoogle Scholar
  3. Aronson J, Floret C, Le Floc’h E, Ovalle C, Pontainer R (1993) Restoration and rehabilitation of degraded ecosystems in arid and semi-arid lands. I. A view from the south. Restoration Ecol 1(1):8–17CrossRefGoogle Scholar
  4. Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, LondonGoogle Scholar
  5. Besler H (1980) Die Dünen-Namib: Entstehung und Dynamik eines Ergs. Stuttgarter Geographische Studien 96Google Scholar
  6. Blignaut A, Milton SJ (2005) Effects of multispecies clumping on survival of three succulent plant species translocated onto mine spoil in the Succulent Karoo Desert, South Africa. Restoration Ecol 13(1):15–19CrossRefGoogle Scholar
  7. Breckle S-W (2003) Rehabilitation of the Aral Sea environment, Kazakhstan. In: Proc Int Worksh Combating Desertification–Rehabilitation of Degraded Drylands and Biosphere Reserves, Aleppo, May 2002. UNESCO-MAB Dryland Series no 2, pp 47–57Google Scholar
  8. Breckle SW, Veste M, Wucherer W (eds) (2001) Sustainable land-use in deserts. Springer, Berlin Heidelberg New YorkGoogle Scholar
  9. Bromilow C (2001) Problem plants of South Africa. Briza, PretoriaGoogle Scholar
  10. Burke A (2003) Practical measures in arid land restoration after mining–a review for the southern Namib. S African J Sci 99:413–41Google Scholar
  11. Carrick PJ, Krüger R (2006) Restoring degraded landscapes in lowland Namaqualand: lessons from the mining experience and from regional ecological dynamic. J Arid Environ DOI 10.1016/j.jaridenv.2006.08.006Google Scholar
  12. Cooke R, Warren A, Goudie A (1993) Desert geomorphology. University College of London Press, LondonGoogle Scholar
  13. Cowling RM, Esler KJ, Rundel PW (1999) Namaqualand, South Africa–an overview of a unique winter-rainfall desert ecosystem. Plant Ecol 142:3–21CrossRefGoogle Scholar
  14. Desmet PG, Cowling RM (1999a) Biodiversity, habitat and range-size aspects of a flora from a winter-rainfall desert in north-western Namaqualand, South Africa. Plant Ecol 142:23–33CrossRefGoogle Scholar
  15. Desmet PG, Cowling RM (1999b) Patch creation by fossorial rodents: a key process in the revegetation of phytotoxic arid soils. J Arid Environ 43:35–46CrossRefGoogle Scholar
  16. Fearnehough W, Fullen MA, Mitchell DJ, Trueman IC, Zhang J (1998) Aeolian deposition and its effect on soil and vegetation changes on stabilized desert dunes in northern China. Geomorphology 23:171–182CrossRefGoogle Scholar
  17. Gao J, Veste M, Sun B, Beyschlag W (eds) (2006) Rehabilitation and stability of ecosystems in arid and semi-arid areas. Science Press, BeijingGoogle Scholar
  18. Gao J, Nishio T, Ichizen N, Veste M, Breckle S-W (2007) Desertification and rehabilitation in China. Japan. J Arid Land Stud 17:101–112Google Scholar
  19. Halbich TFJ (2003) Mine rehabilitation in the arid Succulent Karoo vegetation zone on the South African west coast, Namakwa Sands–case study. In: Heavy Minerals. South African Institute of Mining and Metallurgy, Pretoria, pp 113–118Google Scholar
  20. He Q (2001) Climate change and sandy desertification combating in China. J Beijing Forestry Univ 23:61–65Google Scholar
  21. Ichizen N, Takahashi H, Nishio T, Liu G, Li D, Huang J (2005) Impacts of switchgrass (Panicum virgatum L.) planting on soil erosion in the hills of loess plateau in China. Weed Biol Manage 5:31–34CrossRefGoogle Scholar
  22. Karibaeva KN, Baitulin IO, Glukhovtsev IV, Kovshar AF, Kurochkina LY, Nesterenko VA, Safonov GA, Shabanova LV, Aralbaev NK (1998) National report on conservation and balanced use of biological diversity of the Republic of Kazakhstan. Ministry of Ecology and Natural Resources, Almaty, KazakhstanGoogle Scholar
  23. Lancaster N (1982) Linear dunes. Progr Phys Geogr 6:445–504CrossRefGoogle Scholar
  24. Lancaster N (1987) Formation and reactivation of dunes in the Kalahari: palaeoclimatic implications. Palaeoecol Afr 18:103–110Google Scholar
  25. Le Houérou HN (1986) The desert and arid zones of Northern Africa. In: Evenari M, Noy-Meir I, Goodall DW (eds) Hot deserts and arid shrublands. Elsevier, Amsterdam, pp 101–147Google Scholar
  26. Letolle R, Mainguet M (1996) Der Aralsee–eine ökologische Katastrophe. Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. Li Z, Shi W (2003) Analysis of water consumption of artificial sand-fixing plants and simulation of ecological moisture fitness. Israel J Plant Sci 51(2):101–108CrossRefGoogle Scholar
  28. Li XR, Wang XP, Zhang JG (2002) Microbiotic soil crust and its effect on vegetation and habitat on artificially stabilized desert dunes in Tengger Desert, North China. Bull Fertil Soils 35:147–154CrossRefGoogle Scholar
  29. Li XR, Chen YW, Yang LW (2004a) Cryptogam diversity and formation of soil crusts in temperate desert. Ann Arid Zone 43:335–353Google Scholar
  30. Li XR, Xiao H-L, Zhang JG, Wang XP (2004b) Long-term ecosystems effects of sand-binding vegetation in the Tengger desert, Northern China. Restoration Ecol 12(3):376–390CrossRefGoogle Scholar
  31. Littmann T (1988) Jungquartäre Ökosystemveränderungen und Klimaschwankungen in den Trockengebieten Amerikas und Afrikas. Bochumer Geographische Arbeiten 49Google Scholar
  32. Littmann T (2006) Dust storms in Asia. Geogr Rundsch Int Edn 2:8–12Google Scholar
  33. Mahood K (2003) Strip mining rehabilitation by translocation in arid coastal Namaqualand, South Africa. MSc Thesis, University of Stellenbosch, StellenboschGoogle Scholar
  34. Mainguet M (1999) Aridity. Droughts and human development. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  35. Meirman G, Dimeyeva L, Dzhamantikov K, Wucherer W, Breckle S-W (2001) Phytoreclamation on the dry sea floor of the Aral Sea. In: Breckle SW, Veste M, Wucherer W (eds) Sustainable land-use in deserts. Springer, Berlin Heidelberg New York, pp 318–322CrossRefGoogle Scholar
  36. Milton SJ (2001) Rethinking ecological rehabilitation in arid and winter rainfall regions of southern Africa. S African J Sci 97:1–2Google Scholar
  37. Milton SJ, Yeaton RI, Dean WRJ, Vlok JHJ (1997) Succulent Karoo. In: Cowling RM, Richardson DM, Pierce SM (eds) Vegetation of southern Africa. Cambridge University Press, Cambridge, pp 131–161Google Scholar
  38. Mitchell DJ, Fullen MA, Trueman IC, Fearnehough W (1998) Sustainability of reclaimed desertificated land in Ningxia, China. J Arid Environ 39:239–251CrossRefGoogle Scholar
  39. Müller JV, Veste M, Wucherer W, Breckle S-W (2006) Desertifikation und ihre Bekämpfung–eine Herausforderung an die Wissenschaft. Naturwiss Rundsch 59(11):585–593Google Scholar
  40. NASA (2006) NASA Earth Observatory.
  41. Ogar NP, Geldeev B (2007) The project Development of Natural, Scientific, Technical and Economical Rationale for Territorial Extension of the State Wildlife Preservation Barsakelmes 2004/05–GIS Terra, May 2007. Almaty,
  42. Otterman J, Waisel Y, Rosenberg E (1975) Western Negev and Sinai ecosystems: comparative study of vegetation, albedo, and temperatures. Agro-Ecosystems 2:47–59CrossRefGoogle Scholar
  43. Qiu GY, Lee IB, Shimizu H, Gao Y, Ding G (2004) Principles of sand dune fixation with straw checkerboard technology and its effects on the environment. J Arid Environ 56:449–464CrossRefGoogle Scholar
  44. Sun B, Fang T (2001) Desertification in China and its control. In: Breckle SW, Veste M, Wucherer W (eds) Sustainable land-use in deserts. Springer, Berlin Heidelberg New York, pp 418–426CrossRefGoogle Scholar
  45. TERRA (2007) Development of natural, scientific, technical and economical rationale for territorial extension of the State Wildlife Preservation Barsakelmes. (viewed May 2007)
  46. Tsoar H (1984) The formation of seif dunes from barchans–a discussion. Zeitschr Geomorphol 28:99–104Google Scholar
  47. Tsoar H (1990) The ecological background, deterioration and reclamation of desert dune sand. Agric Ecosystems Environ 33:147–170CrossRefGoogle Scholar
  48. Tsoar H, Møller JT (1986) The role of vegetation in the formation of linear sand dunes. In: Nickling WG (ed) Aeolian geomorphology. Allen and Unwin, Boston, MA, pp 75–95Google Scholar
  49. van Rooyen AF (1998) Combating desertification in the southern Kalahari: connecting science with community action in South Africa. J Arid Environ 39:285–297CrossRefGoogle Scholar
  50. Veisov SK, Cherednichenko VP, Svintsov IP (1999) The fixation of drifting sands. In: Babaev AG (ed) Desert problems and desertification in Central Asia–the researches of the Desert Institute. Springer, Berlin Heidelberg New York, pp 143–153CrossRefGoogle Scholar
  51. Veste M, Jürgens N (2004) Zonobiom III: die Karoo. In: Walter H, Breckle S-W (eds) Ökologie der Erde. Band 2, Spezielle Ökologie der tropischen und subtropischen Zonen. Elsevier, Amsterdam, pp 514–537Google Scholar
  52. Veste M, Gao J, Sun B, Breckle SW (2006) The Green Great Wall–combating desertification in China. Geogr Rundsch Int Edn 2(3):14–20Google Scholar
  53. Wang X, Eerdun H, Zhou Z, Liu X (2006) Significance of variations in the wind energy environment over the past 50 years with respect to dune activity and desertification in arid and semiarid northern China. Geomorphology DOI 10.1016/j.geomorph.2006.09.003Google Scholar
  54. Wucherer W, Breckle S-W (2005) Desertifikationsbekämpfung und Sanierung der Salzwüsten am Aralsee. Sukzession und Phytomelioration, Naturschutz und nachhaltige Entwicklung. Bielefelder Ökologische Beiträge (BÖB), vol 19, pp 1–94Google Scholar
  55. Wucherer W, Breckle S-W, Kaverin VS, Zhamantikov K, Ogar NP (2005a) Phytomeliorative Eigenschaften von Haloxylon aphyllum und Perspektiven der Anpflanzungen in der Region am Aralsee. In: Veste M, Wucherer W, Homeier J (eds) Ökologische Forschung im globalen Kontext. Festschrift zum 65. Geburtstag von Prof. Dr. S.-W. Breckle. Cuvillier, Göttingen, pp 109–128Google Scholar
  56. Wucherer W, Veste M, Herrera Bonilla O, Breckle S-W (2005b) Halophytes as useful tools for rehabilitation of degraded lands and soil protection. In: Proc 1st Int Forum Ecological Construction of the Western Beijing, Mentougou District Government, Beijing Municipal Science & Technology Commission, Beijing, pp 87–94 (in English), pp 169–175 (in Chinese)Google Scholar
  57. Ximing Z, Li X, Zhang H (2001) The control of drift sand on the southern fringe of the Taklamakan desert–an example from the Cele oasis. In: Breckle SW, Veste M, Wucherer W (eds) Sustainable land-use in deserts. Springer, Berlin Heidelberg New York, pp 350–356Google Scholar
  58. Yair A (2001) Sedimentary environments in the desiccated Aral Sea Floor: vegetation recovery and prospects for reclamation. In: Breckle SW, Veste M, Wucherer W (eds) Sustainable land-use in deserts. Springer, Berlin Heidelberg New York, pp 310–317CrossRefGoogle Scholar
  59. Youlin Y, Squires V, Qi L (2001) Global alarm: dust and sandstorms from the world’s drylands. UN, BangkokGoogle Scholar
  60. Zhao H-L, Zhao XY, Zhou R-L, Zhang T-H, Drake S (2005) Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia. J Arid Environ 62:309–319CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • S. -W. Breckle
    • A. Yair
      • M. Veste

        There are no affiliations available

        Personalised recommendations