Ion Relations of Plants and Soil Patterns

  • M. Veste
  • U. Sartorius
  • S. -W. Breckle
Part of the Ecological Studies book series (ECOLSTUD, volume 200)

Climatic conditions govern the water cycle and balance and, thereby, not only the availability of water during the seasons, but also the presence of soluble ions in upper soil horizons and, thus, in an ecosystem. In humid regions, the landscape geomorphology is characterized by a typical drainage system which starts at springs and wells and then continues along water-collecting creeks, rivers and streams, eventually reaching the ocean. This water always contains more or less small amounts of water-soluble ions leached from rocks and soils during capillary movement. A rather small proportion of the ions, however, is always to be found also in rainwater (Walter and Breckle 1983, 1985).

In humid regions, water transport and capillary threads of soil water are directed mainly downstream. In arid regions, capillary movement of soil water is, if present at all, mainly upstream to the soil surface. Here, various ions transported by the water are precipitated and can cause the formation of salt crusts (Breckle 2002b).

In general, in arid regions the input of water by precipitation (rain, snow, dew) over the year to a distinct ecosystem or part of landscape is less than the possible output by potential evapo-transpiration. In humid regions, this is reversed. This has the consequence that, in arid areas, salinization of soils is always a serious danger, especially if leaching of salts is possible in deeper soil horizons or adjacent parent rocks (mainly of NaCl and, to a smaller extent, other water-soluble ions, too).


Sand Dune Standing Biomass Salt Accumulation Salt Crust Dune Crest 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akhani H (2006) Biodiversity of halophytic and sabkha ecosystems in Iran. In: Khan A, Böer B, Kust GS (eds) Sabkha ecosystems, vol II. West and Central Asia. Tasks for Vegetation Science vol 42. Kluwer, Dordrecht, pp 71–88CrossRefGoogle Scholar
  2. Albert R, Pfundner G, Hertenhagen G, Kästenbauer T, Watzka M (2000) The physiotype approach to understanding halophytes and xerophytes. In: Breckle S-W, Schweizer B, Arndt U (Hrsg) Ergebnisse weltweiter ökologischer Forschung. Heimbach, Stuttgart, pp 69–87Google Scholar
  3. Blume H-P, Yair A, Yaalon DH (1995) An initial study of pedogenic features along a transect across dunes and interdune areas. Nizzana region, Negev Israel. Adv GeoEcol 28:51–64Google Scholar
  4. Bornkamm R, Darius F, Prasse R (1998) Element content of perennial plant species in the sand desert near Nizzana. J Plant Nutr Soil Sci 161:189–195CrossRefGoogle Scholar
  5. Breckle S-W (1976) Zur Ökologie und zu den Mineralstoffverhältnissen absalzender und nichtabsalzender Xerohalophyten (unter besonderer Berücksichtigung von Untersuchungen an Atriplex confertifolia und Ceratoides lanata in Utah/USA). Cramer, Berlin, Dissertationes Botanicae 35, pp 1–169Google Scholar
  6. Breckle S-W (1986) Studies of halophytes from Iran and Afghanistan. II. Ecology of halophytes along salt gradients. Proc R Soc Edinburgh 89B:203–215Google Scholar
  7. Breckle S-W (1990) Salinity tolerance of different halophyte types. In: El Bassam N, Dambroth M, Loughman BC (eds) Genetic aspects of plant nutrition. Proc 3rd Int Symp Genetic Aspects of Plant Mineral Nutrition (Developments in Plant and Soil Sciences). Springer, Amsterdam, pp 167–175CrossRefGoogle Scholar
  8. Breckle S-W (1995) How do plants cope with salinity? In: Khan MA, Ungar IA (eds) Biology of salt tolerant plants. Proc Int Symp, Department of Botany, University of Karachi, Pakistan, pp 199–221Google Scholar
  9. Breckle S-W (2000) Wann ist eine Pflanze ein Halophyt? Untersuchungen an Salzpflanzen in Zentralasien und anderen Salzwüsten. In: Breckle S-W, Schweizer B, Arndt U (Hrsg) Ergebnisse weltweiter ökologischer Forschungen. Proc 1st Symp A.F.W. Schimper-Foundation, establ. by H. and E. Walter, Hohenheim. Heimbach, Stuttgart, pp 91–106Google Scholar
  10. Breckle S-W (2002a) Salt deserts in Iran and Afghanistan. In: Barth H-J, Böer B (eds) Sabkha ecosystems, vol. I. The Arabian Peninsula and adjacent countries. Tasks for Vegetation Science vol 36. Kluwer, Dordrecht, pp 71–88Google Scholar
  11. Breckle S-W (2002b) Salinity, halophytes and salt affected natural ecosystems. In: Läuchli A, Lüttge U (eds) Salinity. Environment–Plants–Molecules. Kluwer, Dordrecht, pp 53–77Google Scholar
  12. Breckle S-W, Scheffer A, Wucherer W (2001) Halophytes on the dry seafloor of the Aral Sea. In: Breckle S-W, Veste M, Wucherer W (eds) Sustainable land use in deserts. Springer, Berlin Heidelberg New York, pp 139–146CrossRefGoogle Scholar
  13. Butnik AA, Japakova UN, Begbaeva GF (2001): Halophytes: structure and function. In: Breckle S-W, Veste M, Wucherer W (eds) Sustainable land use in deserts. Springer, Berlin Heidelberg New York, pp 147–153CrossRefGoogle Scholar
  14. Ebeling D (1996) Salzdynamik in Böden des Dünengebeites von Nizzana (Israel). Diplomarbeit, Institut für Geographie, Westf.-Wilhelms Universität MünsterGoogle Scholar
  15. El-Ghonemy AA, El-Gazar A, Wallace A, Kish F, Rommel EM (1977) Mineral element composition of perennial vegetation in relation to soil types in the Northeastern corner of the Western desert of Egypt. Bot Gaz 138:192–205CrossRefGoogle Scholar
  16. Eshel A (1985) Response of Suaeda aegyptiaca to KCl, NaCl, Na2SO4 treatments. Physiol Plant 64:308–315CrossRefGoogle Scholar
  17. Jackson RB, Caldwell MM (1993) Geostatistical patterns of soil heterogeneity around individual perennial plants. J Ecol 81:683–692CrossRefGoogle Scholar
  18. Kinzel H (1982) Pflanzenökologie und Mineralstoffwechsel. Ulmer, StuttgartGoogle Scholar
  19. Macdonald BCT, Melville MD, White I (1999) The distribution of soluble cations within chenopod-patterned ground, arid western New South Wales, Australia. Catena 37:89–105CrossRefGoogle Scholar
  20. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663PubMedCrossRefGoogle Scholar
  21. Reimann C (2003) Vergleichende Untersuchungen zum Salzhaushalt der Chenopodiaceae, unter besonderer Berücksichtigung der Kalium-Natrium-Verhältnisse. Cramer, Berlin, Dissertationes Botanicae 372, pp 1–303Google Scholar
  22. Reimann C (2005) Die Kalium-Natrium-Verhältnisse der Chenopodiaceae in ihrer Beziehung zu taxonomischen und ökophysiologischen Charakteristika der verschiedenen Arten. In: Veste M, Wucherer W, Homeier J (eds) Ökologische Forschung im globalen Kontext. Festschrift Siegmar-Walter Breckle, Cuvillier, Göttingen, pp 25–43Google Scholar
  23. Reimann C, Breckle S-W (1993) Sodium relations in Chenopodiaceae: a comparative approach. Plant Cell Environ 16:323–328CrossRefGoogle Scholar
  24. Rodin LE, Bazilevich I (1967) Production and mineral cycling in terrestrial vegetation. Oliver and Boyd, EdinburghGoogle Scholar
  25. Rummel B, Felix-Henningsen P (2004) Soil water balance of an arid linear sand dune. Int Agrophys 18:333–337Google Scholar
  26. Sartorius U (1996) Untersuchungen zur Verteilung von Na, K, Cl auf die oberirdische Biomasse und deren kleinräumige Dynamik in einem Längsdünensystem in Nizzana, Israel. Diploma Thesis, University of BielefeldGoogle Scholar
  27. Shaltout KH (1992) Nutrient status of Thymelaea hirsuta (L.) Endl. in Egypt. J Arid Environ 23:423–432Google Scholar
  28. Teakle JH (1937) The salt (sodium chloride) content of rain water. J Agric West Austr 14:115–133Google Scholar
  29. Veste M (2004) Zonobiom III: Sinai-Halbinsel und Negev-Wüste. In: Walter H, Breckle S-W (Hrsg) Ökologie der Erde, Band 2. Spezielle Ökologie der tropischen und subtropischen Zonen. Elsevier, Spektrum Akademischer, Amsterdam, pp 629–659Google Scholar
  30. Veste M, Breckle S-W (2000) Ionen- und Wasserhaushalt von Anabasis articulata in Sanddünen der nördlichen Negev-Sinai-Wüste. In: Breckle S-W, Schweizer B, Arndt U (Hrsg) Ergebnisse weltweiter Forschung. Heimbach, Stuttgart, pp 481–485Google Scholar
  31. Veste M, Mohr M (2005) Vegetation der Lineardünen der zentralen Namib und deren Ionenhaushalt. In: Veste M, Wucherer W, HomeierJ (eds) Ökologische Forschung im globalen Kontext. Festschrift Siegmar-Walter Breckle, Cuvillier, Göttingen, pp 93–107Google Scholar
  32. Waisel Y (1972) Biology of halophytes. Academic Press, New YorkGoogle Scholar
  33. Walter H, Breckle S-W (1983) Ökologie der Erde. Band 1. Ökologische Grundlagen in globaler Sicht. UTB-Große Reihe, pp 1–238. Fischer, StuttgartGoogle Scholar
  34. Walter H, Breckle S-W (1985) Ecological systems of the geobiosphere, vol 1. Ecological Principles in Global Perspective. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  35. Winter K, Troughton JH, Evenari M, Läuchli A, Lüttge U (1976) Mineral ion composition and occurrence of CAM-like diurnal malate fluctuations in plants of coastal and desert habitats of Israel and Sinai. Oecologia 25:125–143CrossRefGoogle Scholar
  36. Wucherer W, Breckle S-W (2005) Desertifikationsbekämpfung und Sanierung der Salzwüsten am Aralsee. Sukzession und Phytomelioration, Naturschutz und nachhaltige Entwicklung. Bielefelder Ökologische Beiträge (BÖB) 19:1–94Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Veste
    • U. Sartorius
      • 1
    • S. -W. Breckle
      1. 1.Department of EcologyUniversity of BielefeldBielefeldGermany

      Personalised recommendations