Nitrogen Input Pathways into Sand Dunes: Biological Fixation and Atmospheric Nitrogen Deposition

  • R. Russow
  • M. Veste
  • S. -W. Breckle
  • T. Littmann
  • F. Böhme
Part of the Ecological Studies book series (ECOLSTUD, volume 200)

In arid and semiarid regions, water availability is considered to be the controlling factor for the productivity and pattern of vegetation. The total biotic and abiotic N pool size of desert ecosystems is lower than in most other ecosystems (Skujins 1981). Several studies have found that even in arid lands, nutrients are critical for plant growth and successions (McLendon and Redente 1992). After good rainy years, nitrogen can become the limiting factor (Trumble and Woodroofe 1954) whereas added nitrogen increased productivity in several experiments in dry areas (Ettershank et al. 1978; Ludwig 1987). The main N input pathways into the ecosystems are atmospheric deposition in wet, dry and gaseous forms, and the biological fixation of atmospheric nitrogen N2. Biological fixation is carried out by free-living bacteria, Fabaceae—Rhizobium symbiosis and associative symbiontic free-living cyanobacteria, as well as by cyanobacteria in lichens. Another N source is by non-leguminous nitrogen-fixing species; particularly shrubs and trees play a major role in these ecosystems (Schulze et al. 1991; Valladares et al. 2002).

In this paper, we present field measurements of biological N2 fixation (BNF) obtained by the natural 15N abundance method, and use these to estimate the annual nitrogen input by the soil crusts and R. raetam. We follow a novel approach for the natural 15N abundance technique, by using the non-N2-fixing lichens Squamarina lentigeria and S. cartilaginea (=S. crassa) as reference in order to determine N2 fixation by the biological crust in situ in the Negev desert. N input by BNF of atmospheric nitrogen is compared with atmospheric nitrogen deposition.


Sand Dune Soil Crust Biological Soil Crust Desert Ecosystem Negev Desert 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahmadjian V (1993) The lichen symbiosis. Wiley, New YorkGoogle Scholar
  2. Arnibar JN, Anderson IC, Ringrose S, Macko SA (2003) Importance of nitrogen fixation in soil crusts of southern African arid ecosystems: acetylene reduction and stable isotope studies. J Arid Environ 54:345–358CrossRefGoogle Scholar
  3. Belnap J (2001) Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Ecological Studies vol 150, Springer, Berlin Heidelberg New York, pp 241–261CrossRefGoogle Scholar
  4. Belnap J (2002): Nitrogen fixation in biological soil crusts from southeast Utah, USA. Biol Fertil Soils 35:128–135CrossRefGoogle Scholar
  5. Belnap J, Lange OL (eds) (2001) Biological soil crusts: structure, function and management. Ecological Studies vol 150, Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. Binkley D, Sollins P, McGill WB (1985) Natural abundance of nitrogen-15 as a tool for tracing alder-fixed nitrogen. Soil Sci Soc Am J 49:444–447CrossRefGoogle Scholar
  7. Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutrient Cycles Agroecosystems 57:235–270CrossRefGoogle Scholar
  8. Comstock JP (2001) Steady-state isotopic fractionation in branched pathways using plant uptake of nitrate as an example. Planta 214:220–234PubMedCrossRefGoogle Scholar
  9. Danin A (1996) Plants of the desert dunes. Adaptation of desert organisms. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  10. Dawson TE, Mambelli S, Plamboeck AH, Templer PH, Tu K (2002) Stable isotope in plant ecology. Annu Rev Ecol Systematics 33:507–559CrossRefGoogle Scholar
  11. Ehrlinger JR, Rundel PW (1989) Stable isotope: history, units, and instrumentation. In: Rundel PW, Ehrlinger JR, Nagy KA (eds) Stable isotope in ecological research. Ecological Studies 68, Springer, Berlin Heidelberg New York, pp 342–374CrossRefGoogle Scholar
  12. Ettershank G, Ettershank JA, Bryant M, Whitford WG (1978) Effects of nitrogen fertilization on primary production in a Chihuahuan Desert ecosystem. J Arid Environ 1:135–139Google Scholar
  13. Evans RD (2001) Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci 6:121–126PubMedCrossRefGoogle Scholar
  14. Evans RD, Ehleringer JR (1993) A break in the nitrogen cycle in arid lands? Evidence from E15 of soils. Oecologia 94:314–317CrossRefGoogle Scholar
  15. Evans RD, Lange OL (2001) Biological soil crusts and ecosystems nitrogen and carbon dynamics. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management. Ecological Studies vol 150, Springer, Berlin Heidelberg New York, pp 263–279CrossRefGoogle Scholar
  16. Farnsworth RB (1975) Nodulation and nitrogen fixation in shrubs. In: Stutz HC (ed) Proc Symb Worksh Wildland Shrubs. Bringhan Young University Press, Provo, UT, pp 32–71Google Scholar
  17. Freyer HD (1991): Seasonal variation of 15N/14N ratios in atmospheric nitrate species. Tellus 43B:30–44Google Scholar
  18. Gardener W, Steinberger Y (1989) A proposed mechanism for the formation of “fertile islands” in the desert ecosystems. J Arid Environ 16:257–26Google Scholar
  19. Garten CT (1992) Nitrogen isotope composition of ammonium and nitrate in bulk precipitation and forest throughfall. Int J Environ Anal Chem 47:33–45CrossRefGoogle Scholar
  20. Hawksworth DL, Rose F (1976) Lichens as pollution monitors. Edward Arnold, LondonGoogle Scholar
  21. Heaton THE (1990) 15N/14N ratios of NOx from vehicles and coal-fired power stations. Tellus 42B:304–30Google Scholar
  22. Högberg P (1997) Tansley Review No. 95. 15N natural abundance in soil-plant systems. New Phytol 137:179–203CrossRefGoogle Scholar
  23. Lange OL, Kidron GJ, Büdel B, Meyer A, Killian E, Abeliovich A (1992) Taxonomic composition and photosynthetic characteristics of the “biological soil crusts” covering sand dunes in the western Negev Desert. Funct Ecol 6:519–527CrossRefGoogle Scholar
  24. Littmann T (1997) Atmospheric input of dust and nitrogen into the Nizzana sand dune ecosystems, northwestern Negev Desert, Israel. J Arid Environ 36:433–457CrossRefGoogle Scholar
  25. Ludwig JA (1987) Primary productivity in arid lands: myths and realistic. J Arid Environ 13:1–7Google Scholar
  26. Mayland HF, McIntosh TH, Fuller WH (1966) Fixation of isotopic nitrogen on a semiarid soil by algal crust organism. Soil Sci Soc Am Proc 30:56–60CrossRefGoogle Scholar
  27. McAuliffe C, Chamblee BS, Uribe-Arongo H, Woodhouse WW (1958) Influence of inorganic nitrogen on nitrogen fixation by legumes as revealed by N-15. Agronomy J 50:334–337CrossRefGoogle Scholar
  28. McGregeor AN, Johnson DE (1971) Capacity of desert algal crusts to fix atmospheric nitrogen. Soil Sci Soc Am Proc 35:843–844CrossRefGoogle Scholar
  29. McLendon T, Redente EF (1992) Effects of nitrogen limitation on species replacement dynamics during early succession on a semiarid sagebrush site. Oecologia 91:312–317CrossRefGoogle Scholar
  30. Mulvaney RL (1993) Mass spectrometry. In: Knowles R, Blackburn TH (eds) Nitrogen isotope techniques. Academic Press, New York, pp 11–57Google Scholar
  31. Nadelhoffer KJ, Fry B (1994) Nitrogen isotopes in forest ecosystems. In: Laitha K, Michener RH (eds) Stable isotopes in ecology and environmental science. Blackwell, Oxford, pp 22–44Google Scholar
  32. Pugnaire FL, Haase P, Puigdefábregas J (1996) Facilitation between higher plant species in a semiarid environment. Ecology 77:1420–1426CrossRefGoogle Scholar
  33. Rai AN, Rowell P, Stewart WDP (1983) Interactions between cyanobacterium and fungus during 15N2-incorporation and metabolism in the lichens Peltigera canina. Arch Microbiol 134:136–142CrossRefGoogle Scholar
  34. Roth E (1997): Critical evaluation of the use and analysis of stable isotopes. Pure Appl Chem 69:1753–1828CrossRefGoogle Scholar
  35. Russow R, Faust H (1990) Vergleichende Betrachtung zur Bestimmung der biologischen Stickstoff-Fixierung aus der 15N-Isotopenverdünnung. Zentralb Mikrobiol 145:605–613Google Scholar
  36. Russow R, Veste M, Littmann T (2004) Using the natural 15N-abundance to assess the major nitrogen inputs into the sand dune area of the north-western Negev Desert (Israel). Isotopes Environ Health Stud 40:57–67PubMedCrossRefGoogle Scholar
  37. Rychert RC, Skujins J (1974) Nitrogen fixation by blue-green algae-lichen crusts in the Great Basin Desert. Soil Sci Soc Am Proc 38:768–771CrossRefGoogle Scholar
  38. Scharf H (1988) 100 Jahre Kjeldahl-Aufschluss zur N-Bestimmung. Arch Acker-Pflanzenb Bodenkd 32:321–332Google Scholar
  39. Schlee D, Jung K, Türk R, Gehre M (1996) Natural isotopic variation in species of lichens on an altitude gradient in the eastern central Alps. Ber Nat-med Verhandl Salzburg (Austria) 11:25–34Google Scholar
  40. Schulze ED, Gebauer G, Ziegler H, Lange OL(1991) Estimates of nitrogen fixation by trees on an aridity gradient in Namibia. Oecologia 88:451–455CrossRefGoogle Scholar
  41. Shearer G, Kohl DH (1989) Estimates of N2 fixation in ecosystems. The need for and basis of the 15N natural abundance method. In: Rundel PW, Ehrlinger JR, Nagy KA (eds) Stable isotope in ecological research. Ecological Studies vol 68, Springer, Berlin Heidelberg New York, pp 342–374CrossRefGoogle Scholar
  42. Shearer G, Kohl DH, Virginia RA, Bryan BA, Skeeters JL, Nilsen ET, Sharifi MR, Rundel PW (1983) Estimation of N2-fixation from variation in the natural abundance of 15N in Sonoran desert ecosystem. Oecologia 56:365–373CrossRefGoogle Scholar
  43. Shields LM, Mitchell C, Drouet F (1957) Alga- and lichens-stabilized surface crusts as soil nitrogen sources. Am J Bot 44:489–498CrossRefGoogle Scholar
  44. Skujins J (1981) Nitrogen cycling in arid ecosystems. In: Clark FE, Rosswall T (eds) Terrestrial nitrogen cycles. Ecol Bull (Stockholm) 33:477–491Google Scholar
  45. Stolte K (1993) Lichens as bioindicators of air quality. General Tech Rep RM-224. Rocky Mountain Forest and Range Experiment Station, Fort Collins, COGoogle Scholar
  46. Stratmann A (1996) Untersuchungen zur Verteilung von Stickstoff in Vegetation und Boden eines Längsdünensystems in der Negev-Wüste, Israel. Diplomarbeit, Universität BielefeldGoogle Scholar
  47. Tenbergen B (1991) Vergleichende Landschaftsökologische Untersuchungen im nördlichen Negev-Hochland von Israel. Arbeitsber Lehrstuhl Landschaftsökologie Münster 12Google Scholar
  48. Trumble HC, Woodroffe K (1954) The influence of climatic factors on the reaction of desert shrubs to grazing by sheep. In: Cloudsley-Thompson JL (ed) Biology of deserts. Institute of Biology, London, pp 129–147Google Scholar
  49. Valladares F, Villar-Salvador P, Domínguez S, Fernandez-Pascual M, Penuelas JL, Pugnaire FI (2002) Enhancing the early performance of the leguminous shrub Retama sphaerocarpa (L.) Boiss.: fertilisation versus Rhizobium inoculation. Plant Soils 240:253–262CrossRefGoogle Scholar
  50. Veste M, Littmann T, Schultz A, Eggert K, Sommer C, Breckle S-W (2000) Biomasseverteilung und deren räumliche Modellierung in Sanddünen der Negev-Wüste (Israel).Verhandl Gesell Ökol 30:85Google Scholar
  51. Veste M, Littmann T, Breckle S-W, Yair A (2001a) The role of biological soil crusts on desert sand dunes of the north-western Negev (Israel). In: Breckle S-W, Veste M, Wucherer W (eds) Sustainable land-use in deserts. Springer, Berlin Heidelberg New York, pp 357–367CrossRefGoogle Scholar
  52. Veste M, Littmann T, Friedrich H, Breckle S-W (2001b) Microclimatic boundary conditions for activity of soil lichen crusts in sand dunes of the north-western Negev desert, Israel. Flora 196:465–476Google Scholar
  53. Virginia RA, Jarrell WM, Rundel PW, Shearer G, Kohl DH (1989) The use of variation in the natural abundance of 15N to assess symbiotic nitrogen fixation by woody plants. In: Rundel PW, Ehleringer JR, Nagy KA (eds) Stable isotope in ecological research. Ecological Studies vol 68, Springer, Berlin Heidelberg New York, pp 375–394CrossRefGoogle Scholar
  54. West N (1990) Structure and function of microphytic soil crusts in wildland ecosystems of arid and semi-arid regions. Adv Ecol Res 20:179–223CrossRefGoogle Scholar
  55. West N (1991) Nutrient cycling in semi-arid and arid regions. In: Skujins J (ed) Semiarid lands and deserts: soil resources and reclamation. Marcel Dekker, New York, pp 295–332Google Scholar
  56. West NE, Skujins J (1977) The nitrogen cycle in North America cold winter semiarid ecosystems. Oecologia 12:45–53Google Scholar
  57. Xie G, Steinberger Y (2001) Temporal patterns of C and N under shrub canopy in a loessial soil desert ecosystem. Soil Biol Biochem 33:1371–1379CrossRefGoogle Scholar
  58. Xie G, Steinberger Y (2002) Dynamics of the nitrogen-efficient guild and its relationship to nitrogen and carbon patterns in two desert soil ecosystems. Arid Land Res Manage 16:69–81CrossRefGoogle Scholar
  59. Zaady E, Groffman P, Shachak M (1998) Nitrogen fixation in macro- and microphytic patches in the Negev Desert. Soil Biol Biochem 30:449–454CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • R. Russow
    • 1
  • M. Veste
    • S. -W. Breckle
      • T. Littmann
        • 2
        • 3
      • F. Böhme
        • 4
      1. 1.Department of Soil ScienceHelmholtz-Center for Environmental Research UFZ Leipzig-HalleHalleGermany
      2. 2.Institute for GeoscienceMartin-Luther-University of Halle-WittenbergHalleGermany
      3. 3.DLC Dr. Littmann ConsultingEnnepetalGermany
      4. 4.Department of Soil ScienceHelmholtz-Center for Environmental Research UFZ Leipzig-HalleHalleGermany

      Personalised recommendations