Evapotranspiration, Transpiration and Dewfall

  • T. Littmann
  • M. Veste
Part of the Ecological Studies book series (ECOLSTUD, volume 200)

Actual evapotranspiration is the most critical parameter in hydrological water balance models. The knowledge of atmospheric, plant and soil interactions in drylands is limited. Many evaporation models have been developed, but mainly for agricultural crops. The best known is the single-source Penman-Montheith evaporation model (Monteith 1965). This model assumes that canopies can be regarded as one uniform surface or big, single leaf. Most of the models have been largely successfully used for estimating evapotranspiration from vegetation which is not drought-stressed and relatively uniform, such as in agricultural fields. However, arid and semi-arid regions are characterized by patchy vegetation and larger open spaces.

In an arid environment, especially in sandy areas where surface runoff is of no practical importance in the hydrological budget, it is rainfall, dewfall, and evaporation and plant transpiration which constitute the most relevant parameters. Dewfall may become an input variable at least seasonally even more important than rainfall (Zangvil 1996). In the Negev sand dunes, especially dew has an important ecological implication for the activity and distribution of biological soil crusts and lichens (Chap. 21, this volume).

In this paper, we will apply and compare some of the most common approaches to compute actual evapotranspiration from field measurements in the sandy north-western Negev Desert in Israel, and introduce a practical model specifically applicable to arid environments. In this context, dewfall will be inferred as a reversal of the evaporative process.


Wind Speed Boundary Layer Meteorol Specific Humidity Actual Evapotranspiration Biological Soil Crust 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldocchi DD (1993) Scaling water vapor and carbon dioxide exchange from leaves to a canopy: rules and tools. In: Ehleringer JR, Field CB (eds) Scaling physiological processes leaf to globe. Academic Press, San Diego, CA, pp 77–116CrossRefGoogle Scholar
  2. Beysens D (1995) The formation of dew. Atmospheric Res 39:215–237CrossRefGoogle Scholar
  3. Domingo F, Villagracia L, Brenner AJ, Puigdefábregas J (1999), Evapotranspiration model for semi-arid shrub-lands test against data from SE Spain. Agric Forest Meteorol 95:67–84CrossRefGoogle Scholar
  4. Doorenbos J, Pruitt WO (1977) Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Pap no 24 (revised), RomeGoogle Scholar
  5. Evenari M, Shanan L, Tadmor A (1982) The Negev–The challenge of a desert. Harvard University Press, Cambridge, MAGoogle Scholar
  6. Frankenberger E (1955) Über Strahlung und Verdunstung. Ann Meteorol 6:5–13Google Scholar
  7. Garrat JR, Segal M (1988) On the contribution of dew formation. Boundary Layer Meteorol 45:209–236CrossRefGoogle Scholar
  8. Häckel H (1990) Meteorologie. Ulmer, StuttgartGoogle Scholar
  9. Henning I, Henning D (1984) Die klimatologische Wasserbilanz der Kontinente. Münstersche Geographische Arbeiten 19, MünsterGoogle Scholar
  10. Hicks BB (1983) A study of dewfall in an arid region: an analysis of Wangara data. Q J R Meteorol Soc 109:900–904CrossRefGoogle Scholar
  11. Jacobs AFG, Heusinkveld BG, Berkowicz S (1998) Dew deposition in the Negev Desert: the biological crust. In: Proc 1st Int Conf Fog and Fog Collection, Vancouver, pp 261–264Google Scholar
  12. Jacobs AFG, Heusinkveld BG, Berkowicz S (1999) Dew deposition and drying in a desert system: a simple simulation model. J Arid Environ 42:211–222CrossRefGoogle Scholar
  13. Janssen LHJM, Römer FG (1991) The frequency and duration of dew occurrence over a year. Tellus 43B:408–419Google Scholar
  14. Jarvis PG, McNaughton KG (1986) Stomatal control of transpiration: scaling up from leaf to region. Adv Ecol Res 15:1–48CrossRefGoogle Scholar
  15. Littmann T (1994) Immissionsbelastung durch Schwebstaub und Spurenstoffe im ländlichen Raum Nordwestdeutschlands. Bochumer Geographische Arbeiten 59, BochumGoogle Scholar
  16. Littmann T (1997) Atmospheric input of dust and nitrogen into the Nizzana sand dune ecosystem, northwestern Negev, Israel. J Arid Environ 36:433–457CrossRefGoogle Scholar
  17. Midgley GF, Veste M, von Willert DJ, Davis GW, Steinberg M, Powrie LW (1997) Comparative field performance of three different gas exchange systems. Bothalia 27(1):83–89Google Scholar
  18. Monteith JL (1957) Dew. Q J R Meteorol Soc 83:322–341CrossRefGoogle Scholar
  19. Monteith JL (1965) Evaporation and the environments. Proc Soc Exp Biol 19:205–234Google Scholar
  20. Niu GY, Sun SF, Hong ZX (1997) Water and heat transport in the desert soil and atmospheric boundary layer in western China. Boundary Layer Meteorol 85:179–195CrossRefGoogle Scholar
  21. Ohlmeyer P, Hoyningen-Huene Jv (1975) Die Probleme bei der Diagnose des Wasserverbrauchs eines Pflanzenbestandes, dargestellt am Beispiel der extrem ariden Klimabedingungen der Oase Al Hassa/Saudi Arabien. Mitt Leichtweiß-Institut für Wasserbau TU Braunschweig 46:1–117Google Scholar
  22. Paw UKT, Qiu J, Su HB, Watanabe T, Brunet Y (1995) Surface renewal analysis: a new method to obtain scalar fluxes without velocity data. Agric Forest Meteorol 74:119–137CrossRefGoogle Scholar
  23. Peixoto JP (1973) Atmospheric vapor flux computations for hydrological purposes. WMO contribution to the International Hydrological Decade (IHD) 20, GenevaGoogle Scholar
  24. Penman HL (1948) Evaporation in nature. Rep Progr Phys 11:366–388CrossRefGoogle Scholar
  25. Reynolds JF, Kemp PR, Tenhunen JD (2000) Effects of long-term rainfall variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: a modeling analysis. Plant Ecol 150:145–159CrossRefGoogle Scholar
  26. Roedel W (1992) Physik unserer Umwelt, Die Atmosphäre. Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. Schrödter H (1985) Verdunstung. Springer, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  28. Smith SD, Herr CA, Leary KL, Piorkowski J (1995) Soil-plant water relations in a Mojave Desert mixed shrub community: a comparison of three geomorphic surfaces. J Arid Environ 29:339–351CrossRefGoogle Scholar
  29. Sverdrup HU (1936) Das maritime Verdunstungsproblem. Ann Hydrogr Maritim Meteorol 32:41–47Google Scholar
  30. Swinbank WC (1955) An experimental study of eddy transports in the lower atmosphere. CSIRO, Sydney, Tech Pap 2Google Scholar
  31. Thornthwaite N, Holzman B (1942) Measurement of evaporation from land and water surfaces. USDA Tech Bull no 817Google Scholar
  32. Veste M, Breckle S-W (1996a) Root growth and water uptake in a desert sand dune ecosystem. Acta Phytogeogr Suec 81:59–64Google Scholar
  33. Veste M, Breckle S-W (1996b) Gaswechsel und Wasserpotential von Thymelea hirsuta in verschiedenen Habitaten in der Negev-Wüste. Verhandl Gesell Ökol 25:97–103Google Scholar
  34. Veste M, Littmann T, Friedrich H, Breckle S-W (2001) Microclimatic boundary conditions for activity of soil lichens crusts in sand dunes of the north-western Negev Desert, Israel. Flora 196(6):465–476Google Scholar
  35. Veste M, Eggert K, Breckle S-W, Littmann T (2005) Vegetationsänderungen entlang eines geo-ökologischen Gradienten im Sinai-Negev-Sandfeld (nordwestlicher Negev, Israel). In: Veste M, Wissel C (Hrsg) Beiträge zur Vegetationsökologie der Trockengebiete und Desertifikation. UFZ Bericht 1/2005, Leipzig, pp 65–81Google Scholar
  36. von Willert DJ, Mattysek R, Herppich WB (1995) Experimentelle Ökologie. Thieme, StuttgartGoogle Scholar
  37. Yair A, Lavee H, Greitser N (1997) Spatial and temporal variability of water percolation and movement in a system of longitudinal dunes, western Negev, Israel. Hydrol Processes 11:43–58CrossRefGoogle Scholar
  38. Zangvil A (1996) Six years of dew observations in the Negev Desert, Israel. J Arid Environ 32:361–371CrossRefGoogle Scholar
  39. Zohary M, Orshan O (1954) The Zygophylletum dumosi and its hydroecology in the Negev of Israel. Vegetatio 5/6:341–350CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • T. Littmann
    • 1
    • 2
  • M. Veste
    1. 1.Institute for GeoscienceMartin-Luther-University of Halle-WittenbergHalleGermany
    2. 2.DLC Dr. Littmann ConsultingEnnepetalGermany

    Personalised recommendations