Counter-Free Input-Determined Timed Automata

  • Fabrice Chevalier
  • Deepak D’Souza
  • Pavithra Prabhakar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4763)


We identify a class of timed automata, which we call counter-free input-determined automata, which characterize the class of timed languages definable by several timed temporal logics in the literature, including MTL. We make use of this characterization to show that MTL+Past satisfies an “ultimate stability” property with respect to periodic sequences of timed words. Our results hold for both the pointwise and continuous semantics. Along the way we generalize the result of McNaughton-Papert to show a counter-free automata characterization of FO-definable finitely varying functions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AFH94]
    Alur, R., Fix, L., Henzinger, T.A.: A Determinizable Class of Timed Automata. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 1–13. Springer, Heidelberg (1994)Google Scholar
  2. [AFH96]
    Alur, R., Feder, T., Henzinger, T.A.: The Benefits of Relaxing Punctuality. Journal of the ACM 43(1), 116–146 (1996)MATHCrossRefMathSciNetGoogle Scholar
  3. [CDP06]
    Chevalier, F., D’Souza, D., Prabakhar, P.: On continuous timed automata with input-determined guards. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 369–380. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. [CDP07]
    Chevalier, F., D’Souza, D., Prabhakar, P.: Counter-free input-determined timed automata. Technical Report IISc-CSA-TR-, -1, Indian Institute of Science, Bangalore 560012, India (January 2007), URL
  5. [DM05]
    D’Souza, D., Mohan, M.R.: Eventual Timed Automata. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 322–334. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. [DT04]
    D’Souza, D., Tabareau, N.: On timed automata with input-determined guards. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 68–83. Springer, Heidelberg (2004)Google Scholar
  7. [HRS98]
    Henzinger, T.A., Raskin, J.-F., Schobbens, P.-Y.: The Regular Real-Time Languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 580–591. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  8. [Kam68]
    Kamp, J.A.W.: Tense Logic and the Theory of Linear Order. PhD thesis, University of California, Los Angeles, California (1968)Google Scholar
  9. [Koy90]
    Koymans, R.: Specifying Real-Time Properties with Metric Temporal Logic. Real-Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  10. [MP71]
    McNaughton, R., Papert, S.: Counter-Free Automata. MIT Press, Cambridge, MA (1971)MATHGoogle Scholar
  11. [OW05]
    Ouaknine, J., Worrell, J.: On the Decidability of Metric Temporal Logic. In: LICS, pp. 188–197. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  12. [PD06]
    Prabhakar, P., D’Souza, D.: On the Expressiveness of MTL with Past Operators. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 322–336. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. [RS99]
    Raskin, J.-F., Schobbens, P.-Y.: The logic of event clocks: decidability, complexity and expressiveness. Automatica 4(3), 247–282 (1999)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Fabrice Chevalier
    • 1
  • Deepak D’Souza
    • 2
  • Pavithra Prabhakar
    • 3
  1. 1.Laboratoire Spécification et Vérification, Ecole Normale Superieure de CachanFrance
  2. 2.Dept. of Computer Science & Automation, Indian Institute of Science, Bangalore 560012India
  3. 3.Dept. of Computer Science, University of Illinois at Urbana-ChampaignUSA

Personalised recommendations