Costs Are Expensive!

  • Patricia Bouyer
  • Nicolas Markey
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4763)

Abstract

We study the model-checking problem for WMTL, a cost-extension of the linear-time timed temporal logic MTL, that is interpreted over weighted timed automata. We draw a complete picture of the decidability for that problem: it is decidable only for the class of one-clock weighted timed automata with a restricted stopwatch cost, and any slight extension of this model leads to undecidability. We finally give some consequences on the undecidability of linear hybrid automata.

Keywords

Model Check IEEE Computer Society Temporal Logic Cost Variable Cost Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AD94]
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. [AFH96]
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal of the ACM 43(1), 116–146 (1996)MATHCrossRefMathSciNetGoogle Scholar
  3. [AH90]
    Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. In: Proc. 5th Annual Symposium on Logic in Computer Science (LICS 1990), pp. 390–401. IEEE Computer Society Press, Los Alamitos (1990)Google Scholar
  4. [ALP01]
    Alur, R., Torre, S.L., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. [AN00]
    Abdulla, P.A., Nylén, A.: Better is better than well: On efficient verification of infinite-state systems. In: Proc. 15th Annual Symposium on Logic in Computer Science (LICS 2000), pp. 132–140. IEEE Computer Society press, Los Alamitos (2000)Google Scholar
  6. [BBBR07]
    Bouyer, P., Brihaye, T., Bruyère, V., Raskin, J.-F.: On the optimal reachability problem. Formal Methods in System Design (to appear, 2007)Google Scholar
  7. [BBL04]
    Bouyer, P., Brinksma, E., Larsen, K.G.: Staying alive as cheaply as possible. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 203–218. Springer, Heidelberg (2004)Google Scholar
  8. [BBM06]
    Bouyer, P., Brihaye, T., Markey, N.: Improved undecidability results on weighted timed automata. Information Processing Letters 98(5), 188–194 (2006)CrossRefMathSciNetGoogle Scholar
  9. [BBR04]
    Brihaye, T., Bruyère, V., Raskin, J.-F.: Model-checking for weighted timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 277–292. Springer, Heidelberg (2004)Google Scholar
  10. [BBR05]
    Brihaye, T., Bruyère, V., Raskin, J.-F.: On optimal timed strategies. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 49–64. Springer, Heidelberg (2005)Google Scholar
  11. [BBR06]
    Brihaye, T., Bruyère, V., Raskin, J.-F.: On model-checking timed automata with stopwatch observers. Information and Computation 204(3), 447–478 (2006)CrossRefGoogle Scholar
  12. [BFH+01]
    Behrmann, G., Fehnker, A., Hune, T., Larsen, K.G., Pettersson, P., Romijn, J., Vaandrager, F.: Minimum-cost reachability for priced timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 147–161. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. [BLM07]
    Bouyer, P., Larsen, K.G., Markey, N.: Model-checking one-clock priced timed automata. In: Seidl, H. (ed.) FOSSACS 2007. LNCS, vol. 4423, pp. 108–122. Springer, Heidelberg (2007)Google Scholar
  14. [BLMR06]
    Bouyer, P., Larsen, K.G., Markey, N., Rasmussen, J.I.: Almost optimal strategies in one-clock priced timed automata. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 345–356. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. [BMOW07]
    Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: Proc. 21st Annual Symposium on Logic in Computer Science (LICS’07). IEEE Computer Society Press (to appear, 2007)Google Scholar
  16. [Fle02]
    Fleury, E.: Automates temporisés avec mises à jour. PhD thesis, École Normale Supérieure de Cachan, Cachan, France (2002)Google Scholar
  17. [HKPV98]
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? Journal of Computer and System Sciences 57(1), 94–124 (1998)MATHCrossRefMathSciNetGoogle Scholar
  18. [Koy90]
    Koymans, R.: Specifying real-time properties with Metric Temporal Logic. Real-Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  19. [LMS04]
    Laroussinie, F., Markey, N., Schnoebelen, P.: Model checking timed automata with one or two clocks. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 387–401. Springer, Heidelberg (2004)Google Scholar
  20. [LR05]
    Larsen, K.G., Rasmussen, J.I.: Optimal conditional scheduling for multi-priced timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 234–249. Springer, Heidelberg (2005)Google Scholar
  21. [LW05]
    Lasota, S., Walukiewicz, I.: Alternating timed automata. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 250–265. Springer, Heidelberg (2005)Google Scholar
  22. [LW07]
    Lasota, S., Walukiewicz, I.: Alternating timed automata. ACM Transactions on Computational Logic (to appear, 2007)Google Scholar
  23. [OW05]
    Ouaknine, J., Worrell, J.: On the decidability of Metric Temporal Logic. In: Proc. 19th Annual Symposium on Logic in Computer Science (LICS 2005), pp. 188–197. IEEE Computer Society Press, Los Alamitos (2005)CrossRefGoogle Scholar
  24. [OW06]
    Ouaknine, J., Worrell, J.: On Metric Temporal Logic and faulty Turing machines. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006 and ETAPS 2006. LNCS, vol. 3921, pp. 217–230. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. [OW07]
    Ouaknine, J., Worrell, J.: On the decidability and complexity of Metric Temporal Logic over finite words. Logical Methods in Computer Science 3(1:8), 1–27 (2007)MathSciNetGoogle Scholar
  26. [Ras99]
    Raskin, J.-F.: Logics, Automata and Classical Theories for Deciding Real-Time. PhD thesis, University of Namur, Namur, Belgium (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Patricia Bouyer
    • 1
    • 2
  • Nicolas Markey
    • 1
  1. 1.LSV, CNRS & ENS CachanFrance
  2. 2.Oxford University Computing LaboratoryUK

Personalised recommendations