Combining Formal Verification with Observed System Execution Behavior to Tune System Parameters

  • Minyoung Kim
  • Mark-Oliver Stehr
  • Carolyn Talcott
  • Nikil Dutt
  • Nalini Venkatasubramanian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4763)


Resource limited DRE (Distributed Real-time Embedded) systems can benefit greatly from dynamic adaptation of system parameters. We propose a novel approach that employs iterative tuning using light-weight, on-the-fly formal verification with feedback for dynamic adaptation. One objective of this approach is to enable system designers to analyze designs in order to study design tradeoffs across multiple layers (for example, application, middleware, operating system) and predict the possible property violations as the system evolves dynamically over time. Specifically, an executable formal specification is developed for each layer of the distributed system under consideration. The formal specification is then analyzed using statistical model checking and statistical quantitative analysis, to determine the impact of various resource management policies for achieving desired end-to-end timing/QoS properties. Finally, integration of formal analysis with dynamic behavior from system execution will result in a feedback loop that enables model refinement and further optimization of policies and parameters. We demonstrate the applicability of this approach to the adaptive provisioning of resource-limited distributed real-time systems using a multi-mode multimedia case study.


Iterative System Tuning Formal Modeling Statistical Formal Methods System Realization Cross-layer Timing/QoS/resource Provisioning for Distributed Systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kim, M., Dutt, N., Venkatasubramanian, N.: Policy construction and validation for energy minimization in cross layered systems: A formal method approach. In: IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2006) Work-in-Progress SessionGoogle Scholar
  2. 2.
    Forge Project:
  3. 3.
    Mohapatra, S., Cornea, R., Oh, H., Lee, K., Kim, M., Dutt, N.D., Gupta, R., Nicolau, A., Shukla, S.K., Venkatasubramanian, N.: A cross-layer approach for power-performance optimization in distributed mobile systems. In: IEEE 19th International Parallel and Distributed Processing Symposium (IPDPS 2005) (2005)Google Scholar
  4. 4.
    Kim, M., Stehr, M.O., Talcott, C., Dutt, N., Venkatasubramanian, N.: A probabilistic formal analysis approach to cross layer optimization in distributed embedded systems. In: 9th IFIP International Conference on Formal Methods for Open Object-based Distributed Systems (FMOODS 2007). LNCS, vol. 4468, pp. 285–300 (2007)Google Scholar
  5. 5.
    Kim, D., Kim, M., Ha, S.: A Case Study of System Level Specification and Software Synthesis of Multimode Multimedia Terminal. In: IEEE Workshop on Embedded Systems for Real-Time Multimedia (ESTImedia 2003), pp. 57–64 (2003)Google Scholar
  6. 6.
    Kim, M., Ha, S.: Hybrid run-time power management technique for real-time embedded system with voltage scalable processor. In: ACM Conference on Languages, Compilers, and Tools for Embedded Systems (LCTES 2001), pp. 11–19 (2001)Google Scholar
  7. 7.
    Kim, M., Oh, H., Dutt, N., Nicolau, A., Venkatasubramanian, N.: PBPAIR: an energy-efficient error-resilient encoding using probability based power aware intra refresh. ACM SIGMOBILE Mob. Comput. Commun. Rev. 10(3), 58–69 (2006)CrossRefGoogle Scholar
  8. 8.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.L.: The maude 2.0 system. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 76–87. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Quesada, J.F.: Maude: specification and programming in rewriting logic. Theoretical Computer Science 285(2), 187–243 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All about maude, a high-performance logical framework. LNCS, vol. 4350. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  11. 11.
    Meseguer, J.: Conditional Rewriting Logic as a unified model of concurrency. Theoretical Computer Science 96(1), 73–155 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
  13. 13.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.K.: Verifying continuous time markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)Google Scholar
  14. 14.
    Jarque, C., Bera, A.: A test for normality of observations and regression residuals. Internat. Statist. Rev. 55(2), 163–172 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Kim, M., Stehr, M.O., Talcott, C., Lee, K., Dutt, N., Venkatasubramanian, N.: Iterative system tuning for proactive systems by formal verification and system prototype: System prototype program interface. CECS Technical Report, UC Irvine (February 2007)Google Scholar
  16. 16.
    Signal Process. Multimedia Lab. Univ. British Columbia: TMN 10 (H.263+) encoder/decoder, version 3.2.0 (September 1998)Google Scholar
  17. 17.
  18. 18.
  19. 19.
    Simics Full System Simulation Platform:
  20. 20.
    Han, Q., Venkatasubramanian, N.: AutoSeC: An Integrated Middleware Framework for Dynamic Service Brokering. IEEE Distributed Systems On-line 2(7) (2001)Google Scholar
  21. 21.
    Norman, G., Parker, D., Kwiatkowska, M., Shukla, S., Gupta, R.: Using probabilistic model checking for dynamic power management. Formal Aspects of Computing 17(2), 160–176 (2005)zbMATHCrossRefGoogle Scholar
  22. 22.
    Paleologo, G.A., Benini, L., Bogliolo, A., Micheli, G.D.: Policy optimization for dynamic power management. In: 35th Annual Conference on Design Automation (DAC 1998). pp. 182–187 (1998)Google Scholar
  23. 23.
    Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: A tool for automatic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  24. 24.
    Abdelwahed, S., Kandasamy, N., Neema, S.: Online control for self-management in computing systems. In: 10th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2004), p. 368 (2004)Google Scholar
  25. 25.
    Lu, Z., Hein, J., Humphrey, M., Stan, M., Lach, J., Skadron, K.: Control-theoretic dynamic frequency and voltage scaling for multimedia workloads. In: International Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES 2002). pp. 156–163 (2002)Google Scholar
  26. 26.
    Acquaviva, A., Aldini, A., Bernardo, M., Bogliolo, A., Bonta, E., Lattanzi, E.: Assessing the impact of dynamic power management on the functionality and the performance of battery-powered appliances. In: International Conference on Dependable Systems and Networks (DSN 2004). p. 731 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Minyoung Kim
    • 1
  • Mark-Oliver Stehr
    • 2
  • Carolyn Talcott
    • 2
  • Nikil Dutt
    • 1
  • Nalini Venkatasubramanian
    • 1
  1. 1.University of California, IrvineUSA
  2. 2.SRI InternationalUSA

Personalised recommendations