On the Expressiveness of MTL Variants over Dense Time

  • Carlo Alberto Furia
  • Matteo Rossi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4763)


The basic modal operator bounded until of Metric Temporal Logic (MTL) comes in several variants. In particular it can be strict (when it does not constrain the current instant) or not, and matching (when it requires its two arguments to eventually hold together) or not. This paper compares the relative expressiveness of the resulting MTL variants over dense time. We prove that the expressiveness is not affected by the variations when considering non-Zeno interpretations and arbitrary nesting of temporal operators. On the contrary, the expressiveness changes for flat (i.e., without nesting) formulas, or when Zeno interpretations are allowed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal of the ACM 43(1), 116–146 (1996)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A.: Back to the future. In: Proceedings of FOCS 1992, pp. 177–186 (1992)Google Scholar
  3. 3.
    Alur, R., Henzinger, T.A.: Logics and models of real time. In: Huizing, C., de Bakker, J.W., Rozenberg, G., de Roever, W.-P. (eds.) Real-Time: Theory in Practice. LNCS, vol. 600, pp. 74–106. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  4. 4.
    Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Information and Computation 104(1), 35–77 (1993)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bouyer, P., Chevalier, F., Markey, N.: On the expressiveness of TPTL and MTL. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 432–443. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In: Proceedings of LICS 2007 (2007)Google Scholar
  7. 7.
    Comon, H., Cortier, V.: Flatness is not a weakness. In: Clote, P.G., Schwichtenberg, H. (eds.) CSL 2000. LNCS, vol. 1862, pp. 262–276. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Dams, D.: Flat fragments of CTL and CTL*: Separating the expressive and distinguishing powers. Logic Journal of the IGPL 7(1), 55–78 (1999)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Demri, S., Schnoebelen, P.: The complexity of propositional linear temporal logics in simple cases. Information and Computation 174(1), 84–103 (2002)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    D’Souza, D., Mohan, R.M., Prabhakar, P.: Flattening metric temporal logic. Manuscript (2007)Google Scholar
  11. 11.
    D’Souza, D., Prabhakar, P.: On the expressiveness of MTL in the pointwise and continuous semantics. Formal Methods Letters 9(1), 1–4 (2007)Google Scholar
  12. 12.
    Emerson, E.A.: Temporal and modal logic. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, vol. B, pp. 996–1072. Elsevier, Amsterdam (1990)Google Scholar
  13. 13.
    Etessami, K., Wilke, T.: An until hierarchy for temporal logic. In: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science (LICS 1996), pp. 108–117. IEEE Computer Society Press, Los Alamitos (1996)CrossRefGoogle Scholar
  14. 14.
    Furia, C.A.: Scaling Up the Formal Analysis of Real-Time Systems. PhD thesis, Dipartimento di Elettonica e Informazione, Politecnico di Milano (May 2007)Google Scholar
  15. 15.
    Furia, C.A., Rossi, M.: Integrating discrete- and continuous-time metric temporal logics through sampling. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 215–229. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Furia, C.A., Rossi, M.: No need to be strict. Bulletin of the EATCS (to appear, 2007)Google Scholar
  17. 17.
    Furia, C.A., Rossi, M.: On the expressiveness of MTL variants over dense time. Technical Report 2007.41, DEI, Politecnico di Milano (May 2007)Google Scholar
  18. 18.
    Gabbay, D.M., Hodkinson, I., Reynolds, M.: Temporal Logic, vol. 1. Oxford University Press, Oxford (1994)Google Scholar
  19. 19.
    Gargantini, A., Morzenti, A.: Automated deductive requirement analysis of critical systems. ACM TOSEM 10(3), 255–307 (2001)CrossRefGoogle Scholar
  20. 20.
    Hirshfeld, Y., Rabinovich, A.: Logics for real time. Fundamenta Informaticae 62(1), 1–28 (2004)MATHMathSciNetGoogle Scholar
  21. 21.
    Hirshfeld, Y., Rabinovich, A.: Expressiveness of metric modalities for continuous time. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 211–220. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Hirshfeld, Y., Rabinovich, A.M.: Future temporal logic needs infinitely many modalities. Information and Computation 187(2), 196–208 (2003)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  24. 24.
    Kučera, A., Strejček, J.: The stuttering principle revisited. Acta Informatica 41(7/8), 415–434 (2005)MATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past. In: Proceedings of LICS 2002, pp. 383–392. IEEE Computer Society Press, Los Alamitos (2002)Google Scholar
  26. 26.
    Maler, O., Nickovic, D., Pnueli, A.: Real time temporal logic: Past, present, future. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 2–16. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal logic over finite words. Logical Methods in Computer Science, 3(1) (2007)Google Scholar
  29. 29.
    Prabhakar, P., D’Souza, D.: On the expressiveness of MTL with past operators. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 322–336. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Rabinovich, A.M.: Automata over continuous time. Theoretical Computer Science 300(1–3), 331–363 (2003)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Reynolds, M.: The complexity of the temporal logic with until over general linear time. Journal of Computer and System Sciences 66(2), 393–426 (2003)MATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Thérien, D., Wilke, T.: Nesting until and since in linear temporal logic. Theory of Computing Systems 37(1), 111–131 (2004)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Carlo Alberto Furia
    • 1
  • Matteo Rossi
    • 1
  1. 1.Dipartimento di Elettronica e Informazione, Politecnico di MilanoItaly

Personalised recommendations