Advertisement

Dynamical Properties of Timed Automata Revisited

  • Cătălin Dima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4763)

Abstract

We give a generalization of a solution by Puri to the problem of checking emptiness in timed automata with drifting clocks for the case of automata with non-closed guards. We show that non-closed guards pose certain specific problems which cannot be handled by Puri’s algorithm, and propose a new algorithm, based on the idea of “boundary clock regions” of Alur, LaTorre and Pappas. We then give a symbolic algorithm for solving the reachability problem. Our algorithm is based on a symbolic construction of the “neighborhood” of a zone, and on a procedure that, given a set of zones \(\mathcal{Z}\), builds the forward propagation of the strongly connected components which can be reached from \(\mathcal{Z}\). This improves a symbolic algorithm of Daws and Kordy, due to the ability to handle sets of zones.

Keywords

Stable Zone Hybrid Automaton Region Graph Reachability Problem Clock Drift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AD94]
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [AHV93]
    Alur, R., Henzinger, T.A., Vardi, M.: Parametric real-time reasoning. In: Proceedings of STOC 1993, pp. 592–601. ACM Press, New York (1993)Google Scholar
  3. [AT05]
    Altisen, K., Tripakis, S.: Implementation of timed automata: An issue of semantics or modeling? In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 273–288. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. [ATP01]
    Alur, R., La Torre, S., Pappas, G.J.: Optimal paths in weighted timed automata. In: Di Benedetto, M.D., Sangiovanni-Vincentelli, A.L. (eds.) HSCC 2001. LNCS, vol. 2034, pp. 49–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. [BDM+98]
    Bozga, M., Daws, C., Maler, O., Olivero, A., Tripakis, S., Yovine, S.: Kronos: a model-checking tool for real-time systems. In: Vardi, M.Y. (ed.) CAV 1998. LNCS, vol. 1427, pp. 546–550. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  6. [BGS00]
    Bloem, R., Gabow, H.N., Somenzi, F.: An algorithm for strongly connected component analysis in \(n \ \log\ n\) symbolic steps. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 37–54. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. [BLR05]
    Bouyer, P., Laroussinie, F., Reynier, P.-A.: Diagonal constraints in timed automata: Forward analysis of timed systems. In: Pettersson, P., Yi, W. (eds.) FORMATS 2005. LNCS, vol. 3829, pp. 112–126. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. [DDMR04]
    DeWulf, M., Doyen, L., Markey, N., Raskin, J.F.: Robustness and implementability of timed automata. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 118–133. Springer, Heidelberg (2004)Google Scholar
  9. [DDR05a]
    DeWulf, M., Doyen, L., Raskin, J.-F.: Systematic implementation of real-time models. In: Fitzgerald, J.A., Hayes, I.J., Tarlecki, A. (eds.) FM 2005. LNCS, vol. 3582, pp. 139–156. Springer, Heidelberg (2005)Google Scholar
  10. [DDR05b]
    DeWulf, M., Doyen, L., Raskin, J.F.: Almost asap semantics: from timed models to timed implementations. Formal Aspects of Computing 17(3), 319–341 (2005)CrossRefGoogle Scholar
  11. [DHLP06]
    David, A., Hakanson, J., Larsen, K.G., Petersson, P.: Model checking timed automata with priorities with DBM subtraction. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 128–142. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. [Dim06]
    Dima, C.: Dynamical properties of timed automata revisited. Technical Report TR-2006-03, LACL, Université Paris 12 (2006)Google Scholar
  13. [DK06]
    Daws, C., Kordy, P.: Symbolic robustness analysis of timed automata. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 143–155. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. [GPP03]
    Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components in a linear number of symbolic steps. In: Proceedings of SODA 2003, pp. 573–582 (2003)Google Scholar
  15. [HHWT97]
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: HYTECH: A model checker for hybrid systems. Software Tools for Technol. Transfer 1, 110–122 (1997)zbMATHCrossRefGoogle Scholar
  16. [HKPV98]
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata. J. Comput. Syst. Sci. 57, 94–124 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  17. [LPWY99]
    Larsen, K.G., Pearson, J., Weise, C., Yi, W.: Clock difference diagrams. Nord. J. Comput. 6, 271–298 (1999)zbMATHMathSciNetGoogle Scholar
  18. [LPY97]
    Larsen, K.G., Petterson, P., Yi, W.: Uppaal: Status & developments. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 456–459. Springer, Heidelberg (1997)Google Scholar
  19. [Pur98]
    Puri, A.: Dynamical properties of timed automata. In: Ravn, A.P., Rischel, H. (eds.) FTRTFT 1998. LNCS, vol. 1486, pp. 210–227. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. [WT97]
    Wong-Toi, H.: Analysis of slope-parametric rectangular automata. In: Antsaklis, P.J., Kohn, W., Lemmon, M.D., Nerode, A., Sastry, S.S. (eds.) Hybrid Systems V. LNCS, vol. 1567, pp. 390–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. [Yov98]
    Yovine, S.: Model-checking timed automata. In: Rozenberg, G. (ed.) Lectures on Embedded Systems. LNCS, vol. 1494, pp. 114–152. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Cătălin Dima
    • 1
  1. 1.LACL, Université Paris 12, 61 av. du Général de Gaulle, 94010 CréteilFrance

Personalised recommendations