Advertisement

Automatic Abstraction Refinement for Timed Automata

  • Henning Dierks
  • Sebastian Kupferschmid
  • Kim G. Larsen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4763)

Abstract

We present a fully automatic approach for counterexample guided abstraction refinement of real-time systems modelled in a subset of timed automata. Our approach is implemented in the Moby/RT tool environment, which is a CASE tool for embedded system specifications. Verification in Moby/RT is done by constructing abstractions of the semantics in terms of timed automata which are fed into the model checker Uppaal. Since the abstractions are over-approximations, absence of abstract counterexamples implies a valid result for the full model. Our new approach deals with the situation in which an abstract counterexample is found by Uppaal. The generated abstract counterexample is used to construct either a concrete counterexample for the full model or to identify a slightly refined abstraction in which the found spurious counterexample cannot occur anymore. Hence, the approach allows for a fully automatic abstraction refinement loop starting from the coarsest abstraction towards an abstraction for which a valid verification result is found. Nontrivial case studies demonstrate that this approach computes small abstractions fast without any user interaction.

Keywords

Model Check Integer Variable Programmable Logic Controller Time Automaton Synchronise Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dierks, H.: Time, Abstraction and Heuristics – Automatic Verification and Planning of Timed Systems using Abstraction and Heuristics. Technical report, University of Oldenburg (2006)Google Scholar
  2. 2.
    Olderog, E.R., Dierks, H.: Moby/RT: A Tool for Specification and Verification of Real-Time Systems. J. UCS 9, 88–105 (2003)Google Scholar
  3. 3.
    Dierks, H.: Specification and Verification of Polling Real-Time Systems. PhD thesis, University of Oldenburg (1999)Google Scholar
  4. 4.
    Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126, 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Alur, R., Dill, D.L.: Automata for modeling real-time systems. In: Paterson, M.S. (ed.) Automata, Languages and Programming. LNCS, vol. 443, pp. 322–335. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  6. 6.
    Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M., Corradini, F. (eds.) Formal Methods for the Design of Real-Time Systems. LNCS, vol. 3185, pp. 200–236. Springer, Heidelberg (2004)Google Scholar
  7. 7.
    Krieg-Brückner, B., Peleska, J., Olderog, E.R., Baer, A.: The uniform workbench, a universal development environment for formal methods. In: Woodcock, J.C.P., Davies, J., Wing, J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 1186–1205. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Dierks, H.: PLC-Automata: A New Class of Implementable Real-Time Automata. Theor. Comput. Sci. 253, 61–93 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI planning heuristic for directed model checking. In: Valmari, A. (ed.) Model Checking Software. LNCS, vol. 3925, pp. 35–52. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Kupferschmid, S., Dräger, K., Hoffmann, J., Finkbeiner, B., Dierks, H., Podelski, A., Behrmann, G.: Uppaal/DMC – Abstraction-based Heuristics for Directed Model Checking. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 679–682. Springer, Heidelberg (2007)Google Scholar
  11. 11.
    Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit-state model checking in the validation of communication protocols. STTT (2004)Google Scholar
  12. 12.
    Edelkamp, S., Lluch-Lafuente, A., Leue, S.: Directed explicit model checking with HSF-SPIN. In: Dwyer, M.B. (ed.) Model Checking Software. LNCS, vol. 2057, pp. 57–79. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Trans. Program. Lang. Syst. 16, 1512–1542 (1994)CrossRefGoogle Scholar
  14. 14.
    Balarin, F., Sangiovanni-Vincentelli, A.L.: An iterative approach to language containment. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 29–40. Springer, Heidelberg (1993)Google Scholar
  15. 15.
    Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-Guided Abstraction Refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 154–169. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Clarke, E., Fehnker, A., Han, Z., Krogh, B., Ouaknine, J., Stursberg, O., Theobald, M.: Abstraction and Counterexample-guided Refinement in Model-Checking of Hybrid Systems. Int. J. Found. Comput. Sci. 14, 583–604 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Fehnker, A., Clarke, E., Jha, S., Krogh, B.: Refining Abstractions of Hybrid Systems using Counterexample Fragments. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, Springer, Heidelberg (2005)Google Scholar
  18. 18.
    Alur, R., Dang, T., Ivancic, F.: Predicate Abstraction for Reachability Analysis of Hybrid Systems. Trans. on Embedded Computing Sys. 5, 152–199 (2006)CrossRefGoogle Scholar
  19. 19.
    Segelken, M.: Abstraction and Counterexample-guided Construction of Omega-Automata for Model Checking of Step-discrete linear Hybrid Models. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, Springer, Heidelberg (2007)Google Scholar
  20. 20.
    Laroussinie, F., Larsen, K.G.: CMC: A tool for compositional model-checking of real-time systems. In: Proc. FORTE/PSTV, pp. 439–456. Kluwer Academic Publishers, Dordrecht (1998)Google Scholar
  21. 21.
    Möller, M.O., Rueß, H., Sorea, M.: Predicate abstraction for dense real-time system. In: Proc. TPTS, Elsevier, Amsterdam (2002)Google Scholar
  22. 22.
    Sorea, M.: Lazy approximation for dense real-time systems. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 363–378. Springer, Heidelberg (2004)Google Scholar
  23. 23.
    Sørensen, U., Trane, C.: Optimization for the Uppaal verification tool. Technical report, Aalborg University (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Henning Dierks
    • 1
  • Sebastian Kupferschmid
    • 2
  • Kim G. Larsen
    • 3
  1. 1.OFFIS, OldenburgGermany
  2. 2.University of FreiburgGermany
  3. 3.Aalborg UniversityDenmark

Personalised recommendations