Physiology of Microbes in Biofilms

  • A. M. Spormann
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 322)

Microbial biofilms are governed by an intricate interplay between physical-chemical factors and the physiological and genetic properties of the inhabiting microbes. Many of the physiological traits that are exhibited in a biofilm environment have been observed and studied previously in detail in planktonic cultures. However, their differential and combinatorial phenotypic expression in distinct subpopulations localized to different regions in a biofilm is the cause for the overall biofilm heterogeneity. In this chapter, the causes and consequences of this interplay are elaborated with a special focus on processes controlling biofilm stability and dispersal.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams JL, McLean RJ (1999) Impact of rpoS deletion on Escherichia coli biofilms. Appl Environ Microbiol 65(9):4285–4287PubMedGoogle Scholar
  2. Applegate DH, Bryers JD (1991) Effects of carbon and oxygen limitations and calcium concentrations on biofilm removal processes. Biotechnol Bioeng 37(1):17–25PubMedCrossRefGoogle Scholar
  3. Banin E, Brady KM, Greenberg EP (2006) Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol 72(3):2064–2069PubMedCrossRefGoogle Scholar
  4. Barraud N, Hassett DJ, Hwang SH, Rice SA, Kjelleberg S, Webb JS (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188(21):7344–7353PubMedCrossRefGoogle Scholar
  5. Casper-Lindley C, Yildiz FH (2004) VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor. J Bacteriol 186(5):1574–1578PubMedCrossRefGoogle Scholar
  6. Chen X, Stewart PS (2000) Biofilm removal caused by chemical treatments. Water Res 34:4229–4233CrossRefGoogle Scholar
  7. Christensen BB, Sternberg C, Andersen JB, Palmer RJ Jr, Nielsen AT, Givskov M, Molin S (1999) Molecular tools for study of biofilm physiology. Methods Enzymol 310:20–42PubMedCrossRefGoogle Scholar
  8. Costerton JW (1999) Introduction to biofilm. Int J Antimicrob Agents 11(3–4):217–221; discussion 237–239PubMedCrossRefGoogle Scholar
  9. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322PubMedCrossRefGoogle Scholar
  10. Delaquis PJ, Caldwell DE, Lawrence JR, McCurdy AR (1989) Detachment of Pseudomonas fluorescens from biofilms on glass surfaces in response to nutrient stress. Microb Ecol 18(3):199–210CrossRefGoogle Scholar
  11. Dow JM, Fouhy Y, Lucey JF, Ryan RP (2006) The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Mol Plant Microbe Interact 19(12):1378–1384PubMedCrossRefGoogle Scholar
  12. Duguid IG, Evans E, Brown MR, and Gilbert P (1992a) Effect of biofilm culture upon the susceptibility of Staphylococcus epidermidis to tobramycin. J Antimicrob Chemother 30(6):803–810PubMedCrossRefGoogle Scholar
  13. Duguid IG, Evans E, Brown MR, and Gilbert P (1992b) Growth-rate-independent killing by ciprofloxacin of biofilm-derived Staphylococcus epidermidis; evidence for cell-cycle dependency. J Antimicrob Chemother 30(6):791–802PubMedCrossRefGoogle Scholar
  14. Evans DJ, Allison DG, Brown MR, Gilbert P (1991) Susceptibility of Pseudomonas aeruginosa and Escherichia coli biofilms towards ciprofloxacin: effect of specific growth rate. J Antimicrob Chemother 27(2):177–84PubMedCrossRefGoogle Scholar
  15. Farrell MJ, Finkel SE (2003) The growth advantage in stationary-phase phenotype conferred by rpoS mutations is dependent on the pH and nutrient environment. J Bacteriol 185(24):7044–7052PubMedCrossRefGoogle Scholar
  16. Galperin MY, Nikolskaya AN, Koonin EV (2001) Novel domains of the prokaryotic two-component signal transduction systems. FEMS Microbiol Lett 203(1):11–21PubMedCrossRefGoogle Scholar
  17. Gjermansen M, Ragas P, Sternberg C, Molin S, Tolker-Nielsen T (2005) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms. Environ Microbiol 7(6):894–906PubMedCrossRefGoogle Scholar
  18. Goller C, Wang X, Itoh Y, Romeo T (2006) The cation-responsive protein NhaR of Escherichia coli activates pgaABCD transcription, required for production of the biofilm adhesin poly-beta-1, 6-N-acetyl-D-glucosamine. J Bacteriol. 188(23):8022–8032PubMedCrossRefGoogle Scholar
  19. Hansen SK, Haagensen JA, Gjermansen M, Jorgensen TM, Tolker-Nielsen T, Molin S (2007a) Characterization of a Pseudomonas putida rough variant evolved in a mixed-species biofilm with Acinetobacter sp. strain C6. J Bacteriol 189(13):4932–4943PubMedCrossRefGoogle Scholar
  20. Hansen SK, Rainey PB, Haagensen JA, Molin S (2007b) Evolution of species interactions in a biofilm community. Nature 445(7127):533–536PubMedCrossRefGoogle Scholar
  21. Heidelberg JF, Paulsen IT, Nelson KE et al (2002) Genome sequence of the dissimilatory metal ion-reducing bacterium Shewanella oneidensis. Nat Biotechnol 20(11):1118–1123PubMedCrossRefGoogle Scholar
  22. Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev 66(3):373–395PubMedCrossRefGoogle Scholar
  23. Heydorn A, Ersboll B, Kato J et al (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68(4):2008–2017PubMedCrossRefGoogle Scholar
  24. Hinsa SM, Espinosa-Urgel M, Ramos JL, O’Toole GA (2003) Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49(4):905–918PubMedCrossRefGoogle Scholar
  25. Huang CT, Xu KD, McFeters GA, Stewart PS (1998) Spatial patterns of alkaline phosphatase expression within bacterial colonies and biofilms in response to phosphate starvation. Appl Environ Microbiol 64(4):1526–1531PubMedGoogle Scholar
  26. Itoh Y, Wang X, Hinnebusch BJ, Preston JF 3rd, Romeo T (2005) Depolymerization of beta-1, 6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187(1):382–387PubMedCrossRefGoogle Scholar
  27. Jackson DW, Simecka JW, Romeo T (2002a) Catabolite repression of Escherichia coli biofilm formation. J Bacteriol 184(12):3406–3410PubMedCrossRefGoogle Scholar
  28. Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T (2002b) Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184(1):290–301PubMedCrossRefGoogle Scholar
  29. James GA, Korber DR, Caldwell DE, Costerton JW (1995) Digital image analysis of growth and starvation responses of a surface-colonizing Acinetobacter sp. J Bacteriol 177(4):907–915PubMedGoogle Scholar
  30. Jenal U, Malone J (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annu Rev Genet 40:385–407PubMedCrossRefGoogle Scholar
  31. Liang W, Pascual-Montano A, Silva AJ, Benitez JA (2007) The cyclic AMP receptor protein modulates quorum sensing, motility and multiple genes that affect intestinal colonization in Vibrio cholerae. Microbiology 153(9):2964–2975PubMedCrossRefGoogle Scholar
  32. Liu X, Ng C, Ferenci T (2000) Global adaptations resulting from high population densities in Escherichia coli cultures. J Bacteriol 182(15):4158–4164PubMedCrossRefGoogle Scholar
  33. Ma L, Lu H, Sprinkle A, Parsek MR, Wozniak D (2007) Pseudomonas aeruginosa Psl is a galactose- and mannose-rich exopolysaccharide. J Bacteriol July 13, E-pub ahead of printGoogle Scholar
  34. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39PubMedCrossRefGoogle Scholar
  35. Marshall PA, Loeb GI, Cowan MM, Fletcher M (1989) Response of microbial adhesives and biofilm matrix polymers to chemical treatments as determined by interference reflection microscopy and light section microscopy. App Environ Microbiol 55(11):2827–2831Google Scholar
  36. Monds RD, Newell PD, Gross RH, O’Toole GA (2007) Phosphate-dependent modulation of c-di-GMP levels regulates Pseudomonas fluorescens Pf0–1 biofilm formation by controlling secretion of the adhesin LapA. Mol Microbiol 63(3):656–679PubMedCrossRefGoogle Scholar
  37. Muller J, Miller MC, Nielsen AT, Schoolnik GK, Spormann AM (2007)vpsA- and luxO-independent biofilms of Vibrio cholerae. FEMS Microbiol Lett 275:199–206PubMedCrossRefGoogle Scholar
  38. Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321PubMedCrossRefGoogle Scholar
  39. Nealson KH, Saffarini D (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu Rev Microbiol 48:311–343PubMedCrossRefGoogle Scholar
  40. Nielsen AT, Dolganov NA, Otto G, Miller MC, Wu CY, Schoolnik GK (2006) RpoS controls the Vibrio cholerae mucosal escape response. PLoS Pathog 2(10):e109PubMedCrossRefGoogle Scholar
  41. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79PubMedCrossRefGoogle Scholar
  42. Picioreanu C, van Loosdrecht MC, Heijnen JJ (1998) Mathematical modeling of biofilm structure with a hybrid differential-discrete cellular automaton approach. Biotech Bioeng 58(1):101–116CrossRefGoogle Scholar
  43. Picioreanu C, van Loosdrecht MC, Heijnen JJ (2001) Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng 72(2):205–218PubMedCrossRefGoogle Scholar
  44. Ross P, Mayer R, Weinhouse H et al (1987) Regulation of cellulose synthesis in Acetobacter xylinum by cyclic diguanylic acid. Nature 325:279–281PubMedCrossRefGoogle Scholar
  45. Ross P, Mayer R, Weinhouse H et al (1990) The cyclic diguanylic acid regulatory system of cellulose synthesis in Acetobacter xylinum. Chemical synthesis and biological activity of cyclic nucleotide dimer, trimer, and phosphothioate derivatives. J Biol Chem 265(31):18933–18943PubMedGoogle Scholar
  46. Saffarini DA, Schultz R, Beliaev A (2003) Involvement of cyclic AMP (cAMP) and cAMP receptor protein in anaerobic respiration of Shewanella oneidensis J Bacteriol 185(12):3668–3671PubMedCrossRefGoogle Scholar
  47. Sauer K, Cullen MC, Rickard AH, Zeef LA, Davies DG, Gilbert P (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186(21):7312–7326PubMedCrossRefGoogle Scholar
  48. Sawyer LK, Hermanowicz SW (2000) Detachment of Aeromonas hydrophila and Pseudomonas aeruginosa due to variations in nutrient supply. Water Sci Technol 41:139–145Google Scholar
  49. Schembri MA, Kjaergaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48(1):253–267PubMedCrossRefGoogle Scholar
  50. Sternberg C, Christensen BB, Johansen T et al (1999) Distribution of bacterial growth activity in flow-chamber biofilms. Appl Environ Microbiol 65(9):4108–4117PubMedGoogle Scholar
  51. Sutherland IW (2001) The biofilm matrix - an immobilized but dynamic microbial environment. Trends Microbiol 9(5):222–227PubMedCrossRefGoogle Scholar
  52. Thormann KM, Saville R, Shukla S et al (2004) Initial phases of biofilm formation in Shewanella oneidensis MR-1. J Bacteriol 186(23):8096–8104PubMedCrossRefGoogle Scholar
  53. Thormann KM, Saville R, Shukla S, Spormann AM (2005) Induction of rapid detachment in Shewanella oneidensis MR1 biofilms. J Bacteriol 187(3):1014–1021PubMedCrossRefGoogle Scholar
  54. Thormann KM, Duttler SA, Saville R et al (2006) Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic-di-GMP. J Bacteriol 188(7):2681–2691PubMedCrossRefGoogle Scholar
  55. Tolker-Nielsen T, Molin S (2000) Spatial organization of microbial biofilm communities. Microb Ecol 40(2):75–84PubMedGoogle Scholar
  56. van Loosdrecht MC, Heijnen JJ, Eberl H, Kreft J, Picioreanu C (2002) Mathematical modelling of biofilm structures. Antonie Van Leeuwenhoek 81(1–4):245–256PubMedCrossRefGoogle Scholar
  57. Waite RD, Papakonstantinopoulou A, Littler E, Curtis MA (2005) Transcriptome analysis of Pseudomonas aeruginosa growth: comparison of gene expression in planktonic cultures and developing and mature biofilms. J Bacteriol 187(18):6571–6576PubMedCrossRefGoogle Scholar
  58. Wang X, Preston JF 3rd, Romeo T (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186(9):2724–2734PubMedCrossRefGoogle Scholar
  59. Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T (2005) CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol 56(6):1648–1663PubMedCrossRefGoogle Scholar
  60. Watnick P, Kolter R (2000) Biofilm city of microbes. J Bacteriol 182(10):2675–2679PubMedCrossRefGoogle Scholar
  61. Webb JS, Thompson LS, James S et al (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185(15):4585–4592PubMedCrossRefGoogle Scholar
  62. Webb JS, Lau M, Kjelleberg S (2004) Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J Bacteriol 186(23):8066–8073PubMedCrossRefGoogle Scholar
  63. Whiteley M, Bangera MG, Bumgarner RE et al (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413(6858):860–864PubMedCrossRefGoogle Scholar
  64. Xu KD, Stewart PS, Xia F, Huang CT, McFeters GA (1998) Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64(10):4035–4039PubMedGoogle Scholar
  65. Yildiz FH, Schoolnik GK (1999)Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci U S A 30(96):4028–4033CrossRefGoogle Scholar
  66. Yildiz FH, Liu XS, Heydorn A, Schoolnik GK (2004) Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 53(2):497–515PubMedCrossRefGoogle Scholar
  67. Zinser ER, Kolter R (1999) Mutations enhancing amino acid catabolism confer a growth advantage in stationary phase. J Bacteriol 181(18):5800–5807PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. M. Spormann
    • 1
  1. 1.Departments of Chemical Engineering of Civil and Environmental EngineeringStanford UniversityStanfordUSA

Personalised recommendations