Biofilm Development with an Emphasis on Bacillus subtilis

  • K. P. Lemon
  • A. M. Earl
  • H. C. Vlamakis
  • C. Aguilar
  • R. Kolter
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 322)

Our understanding of the molecular mechanisms involved in biofilm formation has increased tremendously in recent years. From research on diverse bacteria, a general model of bacterial biofilm development has emerged. This model can be adjusted to fit either of two common modes of unicellular existence: nonmotile and motile. Here we provide a detailed review of what is currently known about biofilm formation by the motile bacterium Bacillus subtilis. While the ability of bacteria to form a biofilm appears to be almost universal and overarching themes apply, the combination of molecular events necessary varies widely, and this is reflected in the other chapters of this book.


Bacillus Subtilis Motile Bacterium Microtiter Dish Genetic Circuitry SinR Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beenken KE, Blevins JS, Smeltzer MS (2003) Mutation of sarA in Staphylococcus aureus limits biofilm formation. Infect Immun 71:4206–4211PubMedCrossRefGoogle Scholar
  2. Branda SS, Gonzalez-Pastor JE, Ben-Yehuda S, Losick R, Kolter R (2001) Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A 98:11621–11626PubMedCrossRefGoogle Scholar
  3. Branda SS, Gonzalez-Pastor JE, Dervyn E, Ehrlich SD, Losick R, Kolter R (2004) Genes involved in formation of structured multicellular communities by Bacillus subtilis. J Bacteriol 186:3970–3979PubMedCrossRefGoogle Scholar
  4. Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26PubMedCrossRefGoogle Scholar
  5. Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein component of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238PubMedCrossRefGoogle Scholar
  6. Britton RA, Eichenberger P, Gonzalez-Pastor JE, Fawcett P, Monson R, Losick R, Grossman AD (2002) Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilis. J Bacteriol 184:4881–4890PubMedCrossRefGoogle Scholar
  7. Christensen BB, Sternberg C, Andersen JB, Palmer RJ Jr, Nielsen AT, Givskov M, Molin S (1999) Molecular tools for study of biofilm physiology. Methods Enzymol 310:20–42PubMedCrossRefGoogle Scholar
  8. Chu F, Kearns DB, Branda SS, Kolter R, Losick R (2006) Targets of the master regulator of biofilm formation in Bacillus subtilis. Mol Microbiol 59:1216–1228PubMedCrossRefGoogle Scholar
  9. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322PubMedCrossRefGoogle Scholar
  10. Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL (2005) Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol 55:1160–1182PubMedCrossRefGoogle Scholar
  11. Fawcett P, Eichenberger P, Losick R, Youngman P (2000) The transcriptional profile of early to middle sporulation in Bacillus subtilis. Proc Natl Acad Sci U S A 97:8063–8068PubMedCrossRefGoogle Scholar
  12. Fedtke I, Gotz F, Peschel A (2004) Bacterial evasion of innate host defenses - the Staphylococcus aureus lesson. Int J Med Microbiol 294:189–194PubMedCrossRefGoogle Scholar
  13. Friedman L, Kolter R (2004) Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51:675–690PubMedCrossRefGoogle Scholar
  14. Gotz F (2002)Staphylococcus and biofilms. Mol Microbiol 43:1367–1378PubMedCrossRefGoogle Scholar
  15. Grossman AD (1995) Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu Rev Genet 29:477–508PubMedCrossRefGoogle Scholar
  16. Guvener ZT, McCarter LL (2003) Multiple regulators control capsular polysaccharide production in Vibrio parahaemolyticus. J Bacteriol 185:5431–5441PubMedCrossRefGoogle Scholar
  17. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108PubMedCrossRefGoogle Scholar
  18. Hamon MA, Lazazzera BA (2001) The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol 42:1199–1209PubMedCrossRefGoogle Scholar
  19. Hamon MA, Stanley NR, Britton RA, Grossman AD, Lazazzera BA (2004) Identification of AbrB-regulated genes involved in biofilm formation by Bacillus subtilis. Mol Microbiol 52:847–860PubMedCrossRefGoogle Scholar
  20. Hancock LE, Perego M (2004) The Enterococcus faecalis fsr two-component system controls biofilm development through production of gelatinase. J Bacteriol 186:5629–5639PubMedCrossRefGoogle Scholar
  21. Henrici AT (1933) Studies of freshwater bacteria. I. A direct microscopic technique. J Bacteriol 25:277–287PubMedGoogle Scholar
  22. Kadouri D, Venzon NC, O’Toole GA (2007) Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl Environ Microbiol 73:605–614PubMedCrossRefGoogle Scholar
  23. Kearns DB, Chu F, Branda SS, Kolter R, Losick R (2005) A master regulator for biofilm formation by Bacillus subtilis. Mol Microbiol 55:739–749PubMedCrossRefGoogle Scholar
  24. Kolter R, Greenberg EP (2006) Microbial sciences: the superficial life of microbes. Nature 441:300–302PubMedCrossRefGoogle Scholar
  25. Lasa I (2006) Towards the identification of the common features of bacterial biofilm development. Int Microbiol 9:21–28PubMedGoogle Scholar
  26. Lasa I, Penades JR (2006) Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157:99–107PubMedCrossRefGoogle Scholar
  27. Latasa C, Roux A, Toledo-Arana A, Ghigo JM, Gamazo C, Penades JR, Lasa I (2005) BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar Enteritidis. Mol Microbiol 58:1322–1339PubMedCrossRefGoogle Scholar
  28. Latasa C, Solano C, Penades JR, Lasa I (2006) Biofilm-associated proteins. C R Biol 329:849–857PubMedCrossRefGoogle Scholar
  29. Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK (2005) The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175:7512–7518PubMedGoogle Scholar
  30. Lemon KP, Higgins DE, Kolter R (2007) Flagella-mediated motility is critical for Listeria monocytogenes biofilm formation. J Bacteriol 189:4418–4424PubMedCrossRefGoogle Scholar
  31. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39PubMedCrossRefGoogle Scholar
  32. O’Toole GA, Kolter R (1998a) Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30:295–304PubMedCrossRefGoogle Scholar
  33. O’Toole GA, Kolter R (1998b) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461PubMedCrossRefGoogle Scholar
  34. O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R (1999) Genetic approaches to study of biofilms. Methods Enzymol 310:91–109PubMedCrossRefGoogle Scholar
  35. O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79PubMedCrossRefGoogle Scholar
  36. Piggot PJ, Hilbert DW (2004) Sporulation of Bacillus subtilis. Curr Opin Microbiol 7:579–586PubMedCrossRefGoogle Scholar
  37. Pratt LA, Kolter R (1998) Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30:285–293PubMedCrossRefGoogle Scholar
  38. Predich M, Nair G, Smith I (1992)Bacillus subtilis early sporulation genes kinA,spo0F, and spo0A are transcribed by the RNA polymerase containing sigma H. J Bacteriol 174:2771–2778PubMedGoogle Scholar
  39. Serrano M, Zilhao R, Ricca E, Ozin AJ, Moran CP Jr, Henriques AO (1999) A Bacillus subtilis secreted protein with a role in endospore coat assembly and function. J Bacteriol 181:3632–3643PubMedGoogle Scholar
  40. Shafikhani SH, Mandic-Mulec I, Strauch MA, Smith I, Leighton T (2002) Postexponential regulation of sin operon expression in Bacillus subtilis. J Bacteriol 184:564–571PubMedCrossRefGoogle Scholar
  41. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764PubMedCrossRefGoogle Scholar
  42. Sonenshein AL, Hoch JA, Losick R (eds) (2002)Bacillus subtilis and its closest relatives: from genes to cells. ASM Press, Washington DCGoogle Scholar
  43. Spoering AL, Gilmore MS (2006) Quorum sensing and DNA release in bacterial biofilms. Curr Opin Microbiol 9:133–137PubMedCrossRefGoogle Scholar
  44. Stanley NR, Lazazzera BA (2005) Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-dl-glutamic acid production and biofilm formation. Mol Microbiol 57:1143–1158PubMedCrossRefGoogle Scholar
  45. Stanley NR, Britton RA, Grossman AD, Lazazzera BA (2003) Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J Bacteriol 185:1951–1957PubMedCrossRefGoogle Scholar
  46. Stover AG, Driks A (1999a) Control of synthesis and secretion of the Bacillus subtilis protein YqxM. J Bacteriol 181:7065–7069PubMedGoogle Scholar
  47. Stover AG, Driks A (1999b) Secretion, localization, and antibacterial activity of TasA, a Bacillus subtilis spore-associated protein. J Bacteriol 181:1664–1672PubMedGoogle Scholar
  48. Tormo MA, Marti M, Valle J, Manna AC, Cheung AL, Lasa I, Penades JR (2005) SarA is an essential positive regulator of Staphylococcus epidermidis biofilm development. J Bacteriol 187:2348–2356PubMedCrossRefGoogle Scholar
  49. Valle J, Toledo-Arana A, Berasain C, Ghigo JM, Amorena B, Penades JR, Lasa I (2003) SarA and not sigmaB is essential for biofilm development by Staphylococcus aureus. Mol Microbiol 48:1075–1087PubMedCrossRefGoogle Scholar
  50. Varga JJ, Nguyen V, O’Brien DK, Rodgers K, Walker RA, Melville SB (2006) Type IV pili-dependent gliding motility in the Gram-positive pathogen Clostridium perfringens and other Clostridia. Mol Microbiol 62:680–694PubMedCrossRefGoogle Scholar
  51. Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595PubMedCrossRefGoogle Scholar
  52. Watnick PI, Lauriano CM, Klose KE, Croal L, Kolter R (2001) The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol Microbiol 39:223–235PubMedCrossRefGoogle Scholar
  53. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • K. P. Lemon
    • 1
  • A. M. Earl
    • 1
  • H. C. Vlamakis
    • 1
  • C. Aguilar
    • 1
  • R. Kolter
    • 1
  1. 1.Department of Microbiology and Molecular GeneticsHarvard Medical SchoolBostonUSA

Personalised recommendations