Refining Aggregation Functions for Improving Document Ranking in Information Retrieval

  • Mohand Boughanem
  • Yannick Loiseau
  • Henri Prade
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4772)


Classical information retrieval (IR) methods use the sum for aggregating term weights. In some cases, this may diminish the discriminating power between documents because some information is lost in this aggregation. To cope with this problem, the paper presents an approach for ranking documents in IR, based on a refined vector-based ordering technique taken from multiple criteria analysis methods. Different vector representations of the retrieval status values are considered and compared. Moreover, another refinement of the sum-based evaluation that controls if a term is worth adding or not (in order to avoid noise effect) is considered. The proposal is evaluated on a benchmark collection that allows us to compare the effectiveness of the approach with respect to a classical one. The proposed method provides some improvement of the precision w.r.t Mercure IR system.


Information Retrieval Relevant Document Aggregation Function Query Term Information Retrieval System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grossman, D., Frieder, O.: Information Retrieval: Algorithms and Heuristics. Kluwer Academic Publishers, Dordrecht (1998)zbMATHGoogle Scholar
  2. 2.
    Salton, G., McGill, M.: Introduction to modern information retrieval. McGraw-Hill, New York (1983)zbMATHGoogle Scholar
  3. 3.
    Salton, G., Fox, E., Wu, H.: Extended boolean information retrieval. Communications of the ACM 26, 1022–1036 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Robertson, S.E.: The probability ranking principle. Journal of Documentation 33, 294–304 (1977)CrossRefGoogle Scholar
  5. 5.
    Yager, R.: On ordered weighted averaging aggregation operators in multicriteria decision making. IEEE Transactions on Systems, Man and Cybernetics 18, 183–190 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dubois, D., Prade, H.: A review of fuzzy sets aggregation connectives. Information Sciences 3, 85–121 (1985)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Fodor, J., Yager, R., Rybalov, A.: Structure of uni-norms. International Journal of Uncertainty, Fuzzyness and Knowledge Based Systems 5, 411–427 (1997)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Schamber, L.: Relevance and information behavior. Annual Review of Information Science and Technology 29, 3–48 (1994)Google Scholar
  9. 9.
    Kraft, D.H., Bordogna, G., Pasi, G.: Fuzzy set techniques in information retrieval. In: Fuzzy Sets in Approximate Reasoning and Information Systems, pp. 469–510. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  10. 10.
    Bordogna, G., Pasi, G.: Linguistic aggregation operators of selection criteria in fuzzy information retrieval. Int. J. Intell. Syst. 10, 233–248 (1995)CrossRefGoogle Scholar
  11. 11.
    Losada, D., Díaz-Hermida, F., Bugarín, A., Barro, S.: Experiments on using fuzzy quantified sentences in adhoc retrieval. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 1059–1064. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Boughanem, M., Loiseau, Y., Prade, H.: Improving document ranking in information retrieval using ordered weighted aggregation and leximin refinement. In: 4th Conf. of the European Society for Fuzzy Logic and Technology and 11me Rencontres Francophones sur la Logique Floue et ses Applications, EUSFLAT-LFA 2005, Barcelonnan, Spain, pp. 1269–1274 (2005)Google Scholar
  13. 13.
    Peters, C., Braschler, M., Gonzalo, J., Kluck, M. (eds.): CLEF 2001. LNCS, vol. 2406, pp. 3–4. Springer, Heidelberg (2002)zbMATHGoogle Scholar
  14. 14.
    Dubois, D., Prade, H.: Semantic of quotient operators in fuzzy relational databases. Fuzzy Sets and Systems 78, 89–93 (1996)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Dubois, D., Fargier, H., Prade, H.: Beyond min aggregation in multicriteria decision (ordered) weighted min, discri-min, leximin. In: Yager, R., Kacprzyk, J. (eds.) The Ordered Weighted Averaging Operators, pp. 181–192. Kluwer Academic Publishers, Dordrecht (1997)Google Scholar
  16. 16.
    Moulin, H.: Axioms of Cooperative Decision-Making. Cambridge University Press, Cambridge (1988)zbMATHGoogle Scholar
  17. 17.
    Dubois, D., Prade, H.: On different ways of ordering conjoint evaluations. In: Proc. of the 25th Linz seminar on Fuzzy Set Theory, Linz, Austria, pp. 42–46 (2004)Google Scholar
  18. 18.
    Boughanem, M., Dkaki, T., Mothe, J., Soule-Dupuy, C.: Mercure at TREC-7. In: Proc. of TREC-7. pp. 135–141 (1998)Google Scholar
  19. 19.
    Robertson, S.E., Walker, S.: Okapi-keenbow at TREC-8. In: Proc. 8th Text Retrieval Conf. TREC-8, pp. 60–67 (1999)Google Scholar
  20. 20.
    Porter, M.: An algorithm for suffix stripping. Program 14, 130–137 (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Mohand Boughanem
    • 1
  • Yannick Loiseau
    • 2
  • Henri Prade
    • 1
  1. 1.Irit-Cnrs, Université de Toulouse, 118 route de Narbonne, 31062 Toulouse cedex9France
  2. 2.Limos, Complexe scientifique des Cézeaux, 63177 Aubière cedexFrance

Personalised recommendations