Soft Materials in Technology and Biology – Characteristics, Properties, and Parameter Identification

  • M. Staat
  • G. Baroud
  • M. Topcu
  • S. Sponagel


The growing interest in flexible structures has also brought biomechanics into the focus of engineers. Elastomers and soft tissues consist of similar networks of macromolecules. After a brief introduction to the concepts of continuum mechanics, typical isotropic models of soft materials in technology and biology are presented. Similarities and differences of the thermo-mechanical behavior are discussed. For rubber-like materials a modification of the Kilian network is suggested which greatly simplifies the identification of material parameters. Finally the dynamical loading of biopolymers and volume changes with phase transitions are considered.


Residual Stress Natural Rubber Soft Material Relaxation Function Tensor Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ball JM (1977) Convexity conditions and existence theorems in nonlinear elasticity. Archive for Rational Mechanics and Analysis 63:337–403zbMATHCrossRefGoogle Scholar
  2. 2.
    Balzani D, Schroeder J, Gross D, Neff P (2005) Modeling of anisotropic damage in arterial walls based on polyconvex stored energy functions. In: Oñate E, Owen DRJ (eds) VIII International Conference on Computational Plasticity COMPLAS VIII, CIMNE, BarcelonaGoogle Scholar
  3. 3.
    Baumgärtner A (1991) Gummielastizität. In 22. IFF Ferienkurs: Physik der Polymere. Jülich: Forschungszentrum Jülich, 21:1–38Google Scholar
  4. 4.
    Becker E, Bürger W (1975) Kontinuumsmechanik. Teubner, StuttgartzbMATHGoogle Scholar
  5. 5.
    Böhme G (2000) Strömungsmechanik nichtnewtonscher Fluide. Teubner, StuttgartzbMATHGoogle Scholar
  6. 6.
    Braunschweig H (2004) Viskoelastische Stoßprobleme. Diploma thesis, Aachen University of Applied SciencesGoogle Scholar
  7. 7.
    Bryant-Greenwood GD, Millar LK (2000) Human fetal membranes: their preterm premature rupture. Biol Reprod 63(6):1575–1579CrossRefGoogle Scholar
  8. 8.
    Buggisch H, Mazilu P, Weber H (1988) Parameter identification for viscoelastic materials. Rheologica Acta 27(4):363–368zbMATHCrossRefGoogle Scholar
  9. 9.
    Ciarlet PG (1988) Mathematical Elasticity, Volume 1: Three Dimensional Elasticity. Elsevier, North-HollandGoogle Scholar
  10. 10.
    Cowin SC, Doty SB (2007) Tissue Mechanics. Springer, New YorkzbMATHGoogle Scholar
  11. 11.
    Ehlers W, Karajan N, Markert B (2006) A porous media model describing the inhomogeneous behaviour of the human intervertebral disc. Materialwissenschaft und Werkstofftechnik 37:546–551CrossRefGoogle Scholar
  12. 12.
    Eringen AC (1967) Mechanics of Continua. John Wiley, New YorkzbMATHGoogle Scholar
  13. 13.
    Flory PI (1953) Principles of Polymer Science. Cornell University Press, Ithaca, NY, LondonGoogle Scholar
  14. 14.
    Fung YC (1955) An introduction to the theory of aeroelasticity. John Wiley, New YorkGoogle Scholar
  15. 15.
    Fung YC (1967) Elasticity of soft tissue in simple elongation. Am J Physiol 213:1532–1544Google Scholar
  16. 16.
    Fung YC (1993) Biomechanics: Mechanical Properties of Living Tissues. 2nd ed., Springer, New YorkGoogle Scholar
  17. 17.
    Kassab GS (2004) Fung (Bert) YC (ed) The Father of Modern Biomechanics. Molecular & Cellular Biomechanics 1:5–22Google Scholar
  18. 18.
    Green AE, Adkins JA (1970) Large Elastic Deformation. Oxford University Press, OxfordGoogle Scholar
  19. 19.
    Haupt P (1971) Viskoelastizität inkompressibler isotroper Stoffe. Dissertation, Universität BerlinGoogle Scholar
  20. 20.
    Holzapfel GA (2005) Similarities between soft biological tissues and rubberlike materials. In: Austrell P-E, Kari L (eds) Constitutive Models for Rubber IV. A. A. Balkema, Leiden, pp 607–617Google Scholar
  21. 21.
    Holzapfel GA, Ogden RW (eds) (2003) Biomechanics of soft tissue in cardiovascular systems. Springer, WienzbMATHGoogle Scholar
  22. 22.
    Holzapfel GA, Ogden RW (eds) (2003) Mechanics of biological tissue. Springer, BerlinGoogle Scholar
  23. 23.
    Hsu FPK, Downs J, Liu AMC, Rigamonti D, Humphrey JD (1995) A triplane video-based experimental system for studying axisymmetrically inflated biomembranes. IEEE Trans Biomed Eng 42:442–449CrossRefGoogle Scholar
  24. 24.
    Huilgol RR (1972) Continuum Mechanics. John Wiley, New YorkGoogle Scholar
  25. 25.
    Humphrey JD (2002) Cardiovascular Solid mechanics: Cells, Tissues, and Organs. Springer, New YorkGoogle Scholar
  26. 26.
    Itskov M, Ehret AE, Mavritas D (2006) A polyconvex anisotropic strain–energy function for soft collagenous tissues. Biomech Model Mechanbiol 5:17–26CrossRefGoogle Scholar
  27. 27.
    Kelemen C, Chien S, Artmann GM (2001) Temperature transition of human hemoglobin at body temperature: Effects of calcium. Biophysical Journal 80:2622–2630Google Scholar
  28. 28.
    Kilian H-G (1985) An interpretation of the strain-invariants in largely strained networks. Colloid Polymer Sci 263:30–34CrossRefGoogle Scholar
  29. 29.
    Kilian HG (1986) Möglichkeiten und Grenzen der Charakterisierung von Elastomeren im Zugversuch. GAK 39(10):548–553Google Scholar
  30. 30.
    Kuecken M (2004) On the Formation of Fingerprints. PhD thesis, University of ArizonaGoogle Scholar
  31. 31.
    Kuhl E, Garikipati K, Arruda EM, Grosh K (2005) Remodeling of biological tissue: Mechanically induced reorientation of a transversely isotropic chain network. Journal of the Mechanics and Physics of Solids 53(7):1552–1573zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Lambertz D (1985) Mechanische Kenngrößen biologischer Strukturen bei dynamischer Belastung. Diploma thesis, Aachen University of Applied SciencesGoogle Scholar
  33. 33.
    Landau LD, Lifschitz EM (1965) Elastizitätstheorie. Akademie Verlag, BerlinzbMATHGoogle Scholar
  34. 34.
    Mazilu P (1973) On the constitutive law of Boltzmann-Volterra. Rev Roum Math Pures et Appl 18:1067–1069zbMATHMathSciNetGoogle Scholar
  35. 35.
    Mazilu P (1985) Die Onsager’schen Reziprozitätsbeziehungen in der Thermodynamik der Boltzmann-Volterra Materialien. Z angew Math Mech 65:137–149zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Müller I (1973) Thermodynamik. Bertelsmann, DüsseldorfzbMATHGoogle Scholar
  37. 37.
    Müller I (2001) Grundzüge der Thermodynamik. Springer, BerlinGoogle Scholar
  38. 38.
    Ogden RW, Saccomandi G, Sgura I (2006) On worm-like chain models within the three-dimensional continuum mechanics framework. Proc Roy Soc A462:749–768zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Pechhold W, von Soden W, Kimmich R (1973) The meander model of muscle. Kolloid-Z u Z Polymere 252:829–842CrossRefGoogle Scholar
  40. 40.
    Pechhold WR, Gross T, Grossmann HP (1982) Meander model of amorphous polymers. Colloid Polymer Sci 260:378–393CrossRefGoogle Scholar
  41. 41.
    Reese S (2000) Thermomechanische Modellierung gummiartiger Polymerstrukturen. Habilitation, Universität HannoverGoogle Scholar
  42. 42.
    Roy CS (1880–82) The elastic properties of the arterial wall. Journal of Physiology 3:125–159Google Scholar
  43. 43.
    Schajer GS, Steinzig M (2005) Full-field calculation of hole-drilling residual stresses from electronic speckle pattern interferometry data. Experimental Mechanics 45(6):526–532CrossRefGoogle Scholar
  44. 44.
    Šilhavý M (1997) The Mechanics and Thermodynamics of Continuous Media. Springer, BerlinzbMATHGoogle Scholar
  45. 45.
    Sponagel S (1987) Gummi-Metall-Bauteile. Dissertation, Universität KaiserslauternGoogle Scholar
  46. 46.
    Sponagel S, Unger J, Spies KH (2003) Härtebegriff im Zusammenhang mit Vernetzung, Bruchdehnung und Dauerfestigkeit eines Elastomers. Kautschuk Gummi Kunststoffe 56(11):608–613Google Scholar
  47. 47.
    Staat M, Ballmann J (1989) Fundamental aspects of numerical methods for the propagation of multidimensional nonlinear waves in solids. In: Ballmann J, Jeltsch R (eds) Nonlinear Hyperbolic Equations – Theory, Computation Methods, and Applications. Vieweg, Braunschweig, Wiesbaden, pp 574–588Google Scholar
  48. 48.
    Staat M, Ballmann J (1989) Zur Problematik tensorieller Verallgemeinerungen einachsiger nichtlinearer Materialgesetze. Z angew Math Mech 69(2):73–81zbMATHCrossRefGoogle Scholar
  49. 49.
    Timoshenko SP, Goodier JN (1970) Theory of Elasticity. MacGraw-Hill, New YorkzbMATHGoogle Scholar
  50. 50.
    Truesdell C, Noll W (1965) The Nonlinear Field Theories of Mechanics. In: Flügge S (ed) Handbuch der Physik, Vol. III/3. Springer, Berlin, Göttingen, HeidelbergGoogle Scholar
  51. 51.
    Yamada H (1970) Strength of Biological Materials. Williams & Wilkins, BaltimoreGoogle Scholar
  52. 52.
    Artmann GM, Zerlin KF, Digel I (2008) Hemoglobin senses body temperature. In Artmann GM, Chien S (eds) Bioengineering in Cell and Tissue Research. Springer, Heidelberg, Berlin, pp 415–442CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Staat
    • 1
  • G. Baroud
    • 2
  • M. Topcu
    • 1
  • S. Sponagel
    • 1
  1. 1.Institute of Bioengineering and Biomechanics LaboratoryAachen University of Applied SciencesJülichGermany
  2. 2.Laboratoire de biomécaniquel’Université de SherbrookeSherbrookeCanada

Personalised recommendations