Advertisement

Design and Field Testing of an Autonomous Underground Tramming System

  • Joshua A. Marshall
  • Timothy D. Barfoot
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 42)

Summary

This paper describes the design, implementation, and field testing of an infrastructureless system for autonomous tramming (or hauling) of a center-articulated underground mining vehicle. Described is the development of a fast, reliable, and robust “autotramming” technology that does not require the installation of fixed infrastructure throughout the mine.

Keywords

Unscented Kalman Filter Automate Guide Vehicle Occupancy Grid Path Point Guidance Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baiden, G.R.: Combining teleoperation with vehicle guidance for improving LHD productivity at Inco Ltd. CIM Bulletin 87(981), 36–39 (1994)Google Scholar
  2. 2.
    Amdahl, K., Lundström, M.: Automatic truck saves money underground. World Mining, 40–44 (November 1972)Google Scholar
  3. 3.
    Wiklund, U., Andersson, U., Hyypä, K.: AGV navigation by angle measurements. In: Proceedings of the 6th International Conference on Automated Guided Vehicle Systems, Brussels, Belgium, October 1988, pp. 199–212 (1988)Google Scholar
  4. 4.
    Scheding, S., Dissanayake, G., Nebot, E.M., Durrant-Whyte, H.: An experiment in autonomous navigation of an underground mining vehicle. IEEE Transactions on Robotics and Automation 15(1), 85–95 (1999)CrossRefGoogle Scholar
  5. 5.
    Béranger, V., Hervé, J.-Y.: Recognition of intersections in corridor environments. In: Proceedings of the 13th International Conference on Pattern Recognition, Vienna, Austria, August 1996, pp. 133–137 (1996)Google Scholar
  6. 6.
    Steele, J., Ganesh, C., Kleve, A.: Control and scale model simulation of sensor-guided LHD mining machines. IEEE Transactions on Industry Applications 29(6), 1232–1238 (1993)CrossRefGoogle Scholar
  7. 7.
    Roberts, J.M., Duff, E.S., Corke, P.I., Sikka, P., Winstanley, G.J., Cunningham, J.B.: Autonomous control of underground mining vehicles using reactive navigation. In: Proceedings of the 2000 IEEE Conference on Robotics and Automation, San Francisco, CA, April 2000, pp. 3790–3795 (2000)Google Scholar
  8. 8.
    Silver, D., Ferguson, D., Morris, A., Thayer, S.: Feature extraction for topological mine maps. In: Proc. of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, September 2004, pp. 773–779 (2004)Google Scholar
  9. 9.
    Schaffer, G.K., Stentz, A., Whittaker, W.L., Fitzpatrick, K.W.: Position estimator for underground mine equipment. IEEE Transactions on Industry Applications 28(5), 1131–1140 (1992)CrossRefGoogle Scholar
  10. 10.
    Madhavan, R., Dissanayake, M.W.M.G., Durrant-Whyte, H.F.: Autonomous underground navigation of an LHD using a combined ICP-EKF approach. In: Proceedings of the 1998 IEEE Conference on Robotics and Automation, Leuven, Belgium, May 1998, pp. 3703–3708 (1998)Google Scholar
  11. 11.
    Mäkelä, H.: Overview of LHD navigation without artificial beacons. Robotics and Autonomous Systems 36, 21–35 (2001)CrossRefzbMATHGoogle Scholar
  12. 12.
    Howard, A.: Multi-robot mapping using manifold representations. In: Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, Louisiana, pp. 4198–4203 (2004)Google Scholar
  13. 13.
    Elfes, A., Moravec, H.: High resolution maps from wide angle sonar. In: Proc. of the IEEE Int. Conf. on Rob. and Aut., St. Louis, MO, pp. 116–121 (1985)Google Scholar
  14. 14.
    Thrun, S., Fox, D., Burgard, W., Dellaert, F.: Robust Monte Carlo localization for mobile robots. Artificial Intelligence 128(1–2), 99–141 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Julier, S., Uhlmann, J.: A general method for approximating nonlinear transformations of probability distributions. Technical report, Department of Engineering Science, University of Oxford, Oxford, UK (November 1996)Google Scholar
  16. 16.
    Wan, E.A., van der Merwe, R.: The unscented kalman filter for nonlinear estimation. In: Proc. of the IEEE AS-SPCC, Lake Louise, AB (October 2000)Google Scholar
  17. 17.
    Ridley, P., Corke, P.: Autonomous control of an underground mining vehicle. In: Proceedings of the 2001 Australian Conference on Robotics and Automation, Sydney, Australia, November 2001, pp. 26–31 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Joshua A. Marshall
    • 1
  • Timothy D. Barfoot
    • 2
  1. 1.MDA Space MissionsBramptonCanada
  2. 2.University of Toronto Institute for Aerospace StudiesTorontoCanada

Personalised recommendations