Field and Service Robotics pp 265-274

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 42)

Pedestrian Shape Extraction by Means of Active Contours

  • Massimo Bertozzi
  • Alberto Broggi
  • Stefano Ghidoni
  • Michael Del Rose

Summary

This article presents a shape extraction and results of a preliminary validation stage for a pedestrian detection system based on the use of active contours. The complete system is based on the use of both far infrared and visible cameras to detect areas that potentially contain pedestrians; in order to validate and filter such result a refinement of the human shape by means of active contours is performed followed by a neural network based filtering.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertozzi, M., Broggi, A., Fascioli, A., Sechi, M.: Shape-based Pedestrian Detection. In: Procs. IEEE Intelligent Vehicles Symposium 2000, Detroit, USA, October. 2000, pp. 215–220 (2000), doi:10.1109/IVS.2000.898344.Google Scholar
  2. 2.
    Bertozzi, M., Broggi, A., Felisa, M., Vezzoni, G., Del Rose, M.: Low-level Pedestrian Detection by means of Visible and Far Infra-red Tetra-vision. In: Procs. IEEE Intelligent Vehicles Symposium 2006, Tokyo, Japan, June 2006, pp. 231–236 (2006), doi:10.1109/IVS.2006.1689633.Google Scholar
  3. 3.
    Beymer, D., Konolige, K.: Real-time Tracking of Multiple People using Continuous Detection. In: Procs. Intl. Conf. on Computer Vision, Kerkyra (1999)Google Scholar
  4. 4.
    Broggi, A., Bertozzi, M., Felisa, M., Grisleri, P., Ghidoni, S., Vezzoni, G., Hilario Gómez, C., Del Rose, M.: Pedestrian Detection by means of Far-infrared Stereo Vision. Computer Vision and Image Understanding 106(2), 194–204 (2007)CrossRefGoogle Scholar
  5. 5.
    Curio, C., Edelbrunner, J., Kalinke, T., Tzomakas, C., von Seelen, W.: Walking Pedestrian Recognition. IEEE Trans. on Intelligent Transportation Systems 1(3), 155–163 (2000)CrossRefGoogle Scholar
  6. 6.
    Cutler, R., Davis, L.S.: Robust Real-time Periodic Motion Detection, Analysis and Applications. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(8), 781–796 (2000)CrossRefGoogle Scholar
  7. 7.
    Dao, M.-S., G., F., Natale, B.D., Massa, A.: Edge potential functions and genetic algorithms for shape-based image retrieval. In: Procs. IEEE Intl. Conf. on Image Processing (ICIP 2003), Barcelona, Spain, September 2003, vol. 2, pp. 729–732 (2003)Google Scholar
  8. 8.
    Dao, M.-S., Natale, F.G.B.D., Massa, A.: Efficient Shape Matching Using Weighted Edge Potential Function. In: Procs. 13th Intl. Conf. on Image Analysis and Processing (ICIAP 2005), Cagliari, Italy (September 2005)Google Scholar
  9. 9.
    Del Rose, M., Frederick, P.: Pedestrian Detection. In: Procs. Intelligent Vehicle Systems Symposium, Traverse City, USA (2005)Google Scholar
  10. 10.
    Gavrila, D.M.: Pedestrian Detection from a Moving Vehicle. In: Procs. of European Conference on Computer Vision, vol. 2, pp. 37–49 (2000)Google Scholar
  11. 11.
    Kania, R., Del Rose, M., Frederick, P.: Autonomous Robotic Following Using Vision Based Techniques. In: Procs. Ground Vehicle Survivability Symposium, Monterey, USA (2005)Google Scholar
  12. 12.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active Contour Models. Intl. Journal of Computer Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  13. 13.
    Nanda, H., Davis, L.: Probabilistic Template Based Pedestrian Detection in Infrared Videos. In: Procs. IEEE Intelligent Vehicles Symposium 2002, Paris, France (June 2002)Google Scholar
  14. 14.
    Philomin, V., Duraiswami, R., Davis, L.: Pedestrian Tracking from a Moving Vehicle. In: Procs. IEEE Intelligent Vehicles Symposium 2000, Detroit, USA, October 2000, pp. 350–355 (2000)Google Scholar
  15. 15.
    Polana, R., Nelson, R.C.: Detection and Recognition of Periodic, Non-rigid Motion. Internation Journal of Computer Vision 23(3), 261–282 (1997)CrossRefGoogle Scholar
  16. 16.
    Shashua, A., Gdalyahu, Y., Hayun, G.: Pedestrian Detection for Driving Assistance Systems: Single-frame Classification and System level Performance. In: Procs. IEEE Intelligent Vehicles Symposium 2004, Parma, Italy (June 2004)Google Scholar
  17. 17.
    Shimizu, H., Poggie, T.: Direction Estimation of Pedestrian from Multiple Still Images. In: Procs. IEEE Intelligent Vehicles Symposium 2004, Parma, Italy (June 2004)Google Scholar
  18. 18.
    Stauffer, C., Grimson, W.E.L.: Similarity Templates for Detection and Recognition. Procs. IEEE Intl. Conf. on Computer Vision and Pattern Recognition 1, 221–228 (2001)Google Scholar
  19. 19.
    Williams, D.J., Shah, M.: A Fast Algorithm for Active Contours and Curvature Estimation. CVGIP: Image Understanding 55(1), 14–26 (1992)MATHCrossRefGoogle Scholar
  20. 20.
    Zhao, L.: Dressed Human Modeling, Detection, and Parts Localization. Ph.D. dissertation, Carnegie Mellon University (2001)Google Scholar
  21. 21.
    Zhao, L., Thorpe, C.: Stereo and neural network-based pedestrian detection. IEEE Trans. on Intelligent Transportation Systems 1(3), 148–154 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Massimo Bertozzi
    • 1
  • Alberto Broggi
    • 1
  • Stefano Ghidoni
    • 1
  • Michael Del Rose
    • 2
  1. 1.Dip. Ing. InformazioneParmaItaly
  2. 2.U.S.Army TARDECWarrenU.S.A.

Personalised recommendations