Advertisement

Combined Visual and Inertial Navigation for an Unmanned Aerial Vehicle

  • Jonathan Kelly
  • Srikanth Saripalli
  • Gaurav S. Sukhatme
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 42)

Summary

We describe an UAV navigation system which combines stereo visual odometry with inertial measurements from an IMU. Our approach fuses the motion estimates from both sensors in an extended Kalman filter to determine vehicle position and attitude. We present results using data from a robotic helicopter, in which the visual and inertial system produced a final position estimate within 1% of the measured GPS position, over a flight distance of more than 400 meters. Our results show that the combination of visual and inertial sensing reduced overall positioning error by nearly an order of magnitude compared to visual odometry alone.

Keywords

Unmanned Aerial Vehicle Position Estimate Inertial Measurement Unit Stereo Camera Visual Odometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Corke, P.I., Strelow, D., Singh, S.: Omnidirectional visual odometry for a planetary rover. In: Proc. IEEE/RSJ Int’l Conf. Intelligent Robots and Systems (IROS 2004), vol. 4, pp. 4007–4012 (September 2004)Google Scholar
  2. 2.
    Levin, A., Szeliski, R.: Visual odometry and map correlation. In: Proc. IEEE Computer Soc. Conf. Computer Vision and Pattern Recognition (CVPR 2004), vol. 1, pp. 611–618 (2004)Google Scholar
  3. 3.
    Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry. In: Proc. IEEE Computer Soc. Conf. Computer Vision and Pattern Recognition (CVPR 2004), vol. 1, pp. 652–659 (June 2004)Google Scholar
  4. 4.
    Cheng, Y., Maimone, M.W., Matthies, L.: Visual odometry on the Mars exploration rovers. In: Proc. IEEE Int’l Conf. Systems, Man and Cybernetics, Big Island, USA, vol. 1, pp. 903–910 (October 2005)Google Scholar
  5. 5.
    Roumeliotis, S.I., Johnson, A.E., Montgomery, J.F.: Augmenting inertial navigation with image-based motion estimation. In: Proc. IEEE Int’l Conf. Robotics and Automation (ICRA 2002), Washington D.C., USA, vol. 4, pp. 4326–4333 (May 2002)Google Scholar
  6. 6.
    Amidi, O., Kanade, T., Fujita, K.: A visual odometer for autonomous helicopter flight. J. Robotics and Autonomous Systems 28, 185–193 (1999)CrossRefGoogle Scholar
  7. 7.
    Langelaan, J., Rock, S.: Passive GPS-free navigation for small UAVs. In: Proc. IEEE Aerospace Conf., Big Sky, USA, pp. 1–9 (March 2005)Google Scholar
  8. 8.
    Saripalli, S., Montgomery, J.F., Sukhatme, G.S.: Visually-guided landing of an unmanned aerial vehicle. IEEE Trans. Robotics and Automation 19(3), 371–381 (2003)CrossRefGoogle Scholar
  9. 9.
    Matthies, L., Shafer, S.: Error modeling in stereo navigation. IEEE J. Robotics and Automation RA-3(3), 239–250 (1987)CrossRefGoogle Scholar
  10. 10.
    Matthies, L.: Dyamic stereo vision. Ph.D. dissertation, Carnegie Mellon University (October 1989)Google Scholar
  11. 11.
    Shi, J., Tomasi, C.: Good features to track. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR 1994), Seattle, USA, pp. 593–600 (June 1994)Google Scholar
  12. 12.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Saripalli, S., Roberts, J.M., Corke, P.I., Buskey, G., Sukhatme, G.S.: A tale of two helicopters. In: Proc. IEEE/RSJ Int’l Conf. Intelligent Robots and Systems (IROS 2003), Las Vegas, USA, vol. 1, pp. 805–810 (October 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jonathan Kelly
    • 1
  • Srikanth Saripalli
    • 1
  • Gaurav S. Sukhatme
    • 1
  1. 1.Robotic Embedded Systems LaboratoryUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations