Monte Carlo Localization in Outdoor Terrains Using Multi-Level Surface Maps

  • Rainer Kümmerle
  • Rudolph Triebel
  • Patrick Pfaff
  • Wolfram Burgard
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 42)


In this paper we consider the problem of mobile robot localization with range sensors in outdoor environments. Our approach applies a particle filter to estimate the full six-dimensional state of the robot. To represent the environment we utilize multi-level surface maps which allow the robot to represent vertical structures and multiple levels in the environment. We describe probabilistic motion and sensor models to calculate the proposal distribution and to evaluate the likelihood of observations. Experimental results obtained with a mobile robot in an outdoor environment indicate that our approach can be used to robustly and accurately localize an outdoor vehicle. The experiments also demonstrate that multi-level surface maps lead to a significantly better localization performance than standard elevation maps.


Mobile Robot Motion Vector Outdoor Environment Sensor Model Global Localization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, M., Zhang, S., Xie, L.: Particle filter based outdoor robot localization using natural features extracted from laser scanners. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA) (2004)Google Scholar
  2. 2.
    Agrawal, M., Konolige, K.: Real-time localization in outdoor environments using stereo vision and inexpensive gps. In: International Conference on Pattern Recognition (ICPR) (2006)Google Scholar
  3. 3.
    Bares, J., Hebert, M., Kanade, T., Krotkov, E., Mitchell, T., Simmons, R., Whittaker, W.R.L.: Ambler: An autonomous rover for planetary exploration. IEEE Computer Society Press 22(6), 18–22 (1989)Google Scholar
  4. 4.
    Davison, A., Kita, N.: 3d simultaneous localisation and map-building using active vision for a robot moving on undulating terrain. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, Kauai, December 2001, IEEE Computer Society Press, Los Alamitos (2001)Google Scholar
  5. 5.
    Dellaert, F., Fox, D., Burgard, W., Thrun, S.: Monte Carlo localization for mobile robots. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA) (1999)Google Scholar
  6. 6.
    Doucet, A., de Freitas, N., Gordan, N. (eds.): Sequential Monte-Carlo Methods in Practice. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  7. 7.
    Eliazar, A., Parr, R.: Learning probabilistic motion models for mobile robots. In: Proc. of the International Conference on Machine Learning (ICML) (2004)Google Scholar
  8. 8.
    Grisetti, G., Stachniss, C., Burgard, W.: Improving grid-based slam with rao-blackwellized particle filters by adaptive proposals and selective resampling. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), Barcelona, Spain, pp. 2443–2448 (2005)Google Scholar
  9. 9.
    Hebert, M., Caillas, C., Krotkov, E., Kweon, I.S., Kanade, T.: Terrain mapping for a roving planetary explorer. In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA), pp. 997–1002 (1989)Google Scholar
  10. 10.
    Lacroix, S., Mallet, A., Bonnafous, D., Bauzil, G., Fleury, S., Herrb, M., Chatila, R.: Autonomous rover navigation on unknown terrains: Functions and integration. International Journal of Robotics Research 21(10-11), 917–942 (2002)CrossRefGoogle Scholar
  11. 11.
    Lingemann, K., Surmann, H., Nüchter, A., Hertzberg, J.: High-speed laser localization for mobile robots. Journal of Robotics & Autonomous Systems 51(4), 275–296 (2005)CrossRefGoogle Scholar
  12. 12.
    Olson, C.F.: Probabilistic self-localization for mobile robots. IEEE Transactions on Robotics and Automation 16(1), 55–66 (2000)CrossRefGoogle Scholar
  13. 13.
    Parra, C., Murrieta-Cid, R., Devy, M., Briot, M.: 3-d modelling and robot localization from visual and range data in natural scenes. In: Christensen, H.I. (ed.) ICVS 1999. LNCS, vol. 1542, pp. 450–468. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Pfaff, P., Triebel, R., Burgard, W.: An efficient extension to elevation maps for outdoor terrain mapping and loop closing. International Journal of Robotics Research (2007)Google Scholar
  15. 15.
    Thrun, S.: A probabilistic online mapping algorithm for teams of mobile robots. International Journal of Robotics Research 20(5), 335–363 (2001)CrossRefGoogle Scholar
  16. 16.
    Triebel, R., Pfaff, P., Burgard, W.: Multi level surface maps for outdoor terrain mapping and loop closing. In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS) (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rainer Kümmerle
    • 1
  • Rudolph Triebel
    • 1
    • 2
  • Patrick Pfaff
    • 1
  • Wolfram Burgard
    • 1
  1. 1.Department of Computer ScienceUniversity of FreiburgGermany
  2. 2.Autonomous Systems LabSwiss Federal Institute of TechnologyZurichSwitzerland

Personalised recommendations