Distributed Time-Asynchronous Automata

  • Cătălin Dima
  • Ruggero Lanotte
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4711)


We show that the class of distributed time-asynchronous automata is more expressive than timed automata, has a decidable emptiness problem, is closed under union, concatenation, star, shuffle and renaming, but not under intersection. The closure results are obtained by showing that distributed time-asynchronous automata are equivalent with a subclass of shuffle regular expressions and its related class of stopwatch automata.


Regular Expression Discrete Transition Input Symbol Hybrid Automaton Reachability Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdeddaïm, Y., Maler, O.: Preemptive job-shop scheduling using stopwatch automata. In: Katoen, J.-P., Stevens, P. (eds.) ETAPS 2002 and TACAS 2002. LNCS, vol. 2280, pp. 113–126. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Asarin, E.: Challenges in timed languages. Bulletin of EATCS 1983 (2004)Google Scholar
  4. 4.
    Asarin, E., Caspi, P., Maler, O.: Timed regular expressions. Journal of ACM 49, 172–206 (2002)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Bouyer, P., Petit, A., Thérien, D.: An algebraic approach to data languages and timed languages. Inf. Comput. 182(2), 137–162 (2003)zbMATHCrossRefGoogle Scholar
  6. 6.
    Dima, C.: Computing reachability relations in timed automata. In: Proceedings of LICS 2002, pp. 177–186 (2002)Google Scholar
  7. 7.
    Dima, C.: Timed shuffle expressions. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 95–109. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Henzinger, T., Raskin, J.-F., Schobbens, P.-Y.: The regular real-time languages. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 580–591. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  9. 9.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata. J. Comput. Syst. Sci. 57, 94–124 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Krishnan, P.: Distributed timed automata. Electr. Notes Theor. Comput. Sci. 28 (1999)Google Scholar
  11. 11.
    Ouaknine, J., Worrell, J.: Revisiting digitization, robustness, and decidability for timed automata. In: Proceedings of LICS 2003, pp. 198–207. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  12. 12.
    Yovine, S.: Model-checking timed automata. In: Rozenberg, G. (ed.) Lectures on Embedded Systems. LNCS, vol. 1494, pp. 114–152. Springer, Heidelberg (1998)Google Scholar
  13. 13.
    Zielonka, W.: Notes on finite asynchronous automata. Informatique Théorique et Applications 21(2), 99–135 (1987)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Cătălin Dima
    • 1
  • Ruggero Lanotte
    • 2
  1. 1.LACL, Université Paris 12, 61 av. du Général de Gaulle, 94010 Créteil CedexFrance
  2. 2.Università dell’Insubria, Via Valleggio 11, 22100, ComoItaly

Personalised recommendations