Advertisement

Terrain Synthesis By-Example

  • John Brosz
  • Faramarz F. Samavati
  • Mario Costa Sousa
Part of the Communications in Computer and Information Science book series (CCIS, volume 4)

Abstract

Synthesizing terrain or adding detail to terrains manually is a long and tedious process. With procedural synthesis methods this process is faster but more difficult to control. This paper presents a new technique of terrain synthesis that uses an existing terrain to synthesize new terrain. To do this we use multi-resolution analysis to extract the high-resolution details from existing models and apply them to increase the resolution of terrain. Our synthesized terrains are more heterogeneous than procedural results, are superior to terrains created by texture transfer, and retain the large-scale characteristics of the original terrain.

Keywords

Terrain synthesis modeling multi-resolution analysis multi-fractals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benes, B., Forsbach, R.: Layered data representation for visual simulation of terrain erosion. In: Proceedings of SCCG 2001, pp. 80–86 (2001)Google Scholar
  2. Brivio, P.A., Marini, D.: A fractal method for digital elevation model construction and its application to a mountain region. Computer Graphics Forum 12(5), 297–309 (1996)CrossRefGoogle Scholar
  3. Brosz, J.: Terrain modeling by example. University of Calgary, Department of Computer Science (2005)Google Scholar
  4. Bryce, Bryce 5.0 User Manual. Daz Software (2005), http://bryce.daz3d.com/Bryze_Manual_DAZ.pdf
  5. Burke, R.: Image quilting, texture transfer, and wang tiling implementation (2005)Google Scholar
  6. Chiang, M., Huang, J., Tai, W., Liu, C., Chang, C.: Terrain synthesis: An interactive approach. In: International Workshop on Advanced Image Tech (2005)Google Scholar
  7. Ebert, D.S. (ed.): Texturing and Modeling: A Procedural Approach. AP Professional (1994)Google Scholar
  8. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceedings of SIGGRAPH 2001, pp. 341–346 (2001)Google Scholar
  9. Fournier, A., Fussell, D., Carpenter, L.: Computer rendering of stochastic models. Commun. ACM 25(6), 371–384 (1982)CrossRefGoogle Scholar
  10. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In: Proceedings of SIGGRAPH ’97, pp. 209–216 (1997)Google Scholar
  11. Hertzmann, A., Jacobs, C.E., Oliver, N., Curless, B., Salesin, D.H.: Image analogies. In: Proceedings of SIGGRAPH ’01, pp. 327–340 (2001)Google Scholar
  12. Hoppe, H.: Progressive meshes. In: Proceedings of SIGGRAPH ’96, pp. 99–108 (1996)Google Scholar
  13. Kelley, A., Malin, M., Nielson, G.: Terrain simulation using a model of stream erosion. In: Proceedings of SIGGRAPH ’88, pp. 263–268 (1988)Google Scholar
  14. Lewis, J.P.: Generalized stochastic subdivision. ACM Transactions on Graphics 6(3), 167–190 (1987)CrossRefGoogle Scholar
  15. Losasso, F., Hoppe, H.: Geometry clipmaps: terrain rendering using nested regular grids. ACM Transactions on Graphics 23, 769–776 (2004)CrossRefGoogle Scholar
  16. McLusky, J.: Terrain dialog description (2005), http://www.planetside.co.uk/terragen/guidde/dlg_terrain.html
  17. Miller, G.S.P,: The definition and rendering of terrain maps. In: Proceedings of SIGGRAPH ’86, pp. 39–48 (1986)Google Scholar
  18. Musgrave, F., Kolb, C., Mace, R.: The synthesis and rendering of eroded fractal terrains. In: Proceedings of SIGGRAPH ’89, pp. 41–50 (1989)Google Scholar
  19. Nagashima, K.: Computer generation of eroded valley and mountain terrain. The Visual Computer, pp. 456–464 (1997)Google Scholar
  20. Peitgen, H.-O., Saupe, D. (eds.): The Science of Fractal Images. Springer, Heidelberg (1988)Google Scholar
  21. Pumar, M.A.: Zooming of terrain imagery using fractal-based interpolation. Computers and Graphics 20(1), 171–176 (1996)CrossRefGoogle Scholar
  22. Roettger, S., Frick, I.: The terrain rendering pipeline. In: Proc. of East-West Vision ’02, pp. 195–199 (2002)Google Scholar
  23. Samavati, F.F., Bartels, R.H.: Multiresolution curve and surface representation by reversing subdivision rules. Computer Graphics Forum 18(2), 97–120 (1999)CrossRefGoogle Scholar
  24. Samavati, F.F., Bartels, R.H.: Local bspline wavelets. In: Proceedings of the International Workshop on Biometric Technologies (2004)Google Scholar
  25. Schroeder, W.J., Zarge, J.A., Lorensen, W.E.: Decimation of triangle meshes. In: Proceedings of SIGGRAPH 1992, pp. 65–70 (1992)Google Scholar
  26. Shary, P.A., Sharaya, L.S., Mitusov, A.V.: Fundamental quantitative methods of land surface analysis. Geoderma 107(1-2), 1–32 (2002)CrossRefGoogle Scholar
  27. Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: Shiftable multi-scale transforms. IEEE Trans. on Informations Theory 38(2), 587–607 (1992)MathSciNetCrossRefGoogle Scholar
  28. U.S.G.S. Seamless data distribution system (2005), http://seamless.usgs.gov

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • John Brosz
    • 1
  • Faramarz F. Samavati
    • 1
  • Mario Costa Sousa
    • 1
  1. 1.University of Calgary, 2500 University Drive NW, CalgaryCanada

Personalised recommendations