Advertisement

Fitness Function Comparison for GA-Based Feature Construction

  • Leila S. Shafti
  • Eduardo Pérez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4788)

Abstract

When primitive data representation yields attribute interactions, learning requires feature construction. MFE2/GA, a GA-based feature construction has been shown to learn more accurately than others when there exist several complex attribute interactions. A new fitness function, based on the principle of Minimum Description Length (MDL), is proposed and implemented as part of the MFE3/GA system. Since the individuals of the GA population are collections of new features constructed to change the representation of data, an MDL-based fitness considers not only the part of data left unexplained by the constructed features (errors), but also the complexity of the constructed features as a new representation (theory). An empirical study shows the advantage of the new fitness over other fitness not based on MDL, and both are compared to the performance baselines provided by relevant systems.

Keywords

Machine learning attribute interaction feature construction feature selection genetic algorithms MDL principle Entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu, H., Motoda, H.: Feature Extraction, Construction and Selection: A Data Mining Perspective. The International Series in Engineering and Computer Science, vol. 453. Kluwer Academic Publishers, Norwell, MA, USA (1998)zbMATHGoogle Scholar
  2. 2.
    Freitas, A.A.: Understanding the crucial role of attribute interaction in data mining. AI Review 16(3), 177–199 (2001)zbMATHGoogle Scholar
  3. 3.
    Jakulin, A., Bratko, I.: Testing the significance of attribute interactions. In: Brodley, C.E. (ed.) Proc. of the Twenty-first International Conference on Machine Learning, pp. 409–416. ACM Press, New York, USA (2004)Google Scholar
  4. 4.
    Pérez, E., Rendell, L.A.: Using multidimensional projection to find relations. In: Proc. of the Twelfth International Conference on Machine Learning, Tahoe City, California, pp. 447–455. Morgan Kaufmann, San Francisco (1995)Google Scholar
  5. 5.
    Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York, Inc (1999)Google Scholar
  6. 6.
    Larsen, O., Freitas, A.A., Nievola, J.C.: Constructing X-of-N attributes with a genetic algorithm. In: Proc. of the GECCO, p. 1268. Morgan Kaufmann, San Francisco (2002)Google Scholar
  7. 7.
    Muharram, M., Smith, G.D.: Evolutionary constructive induction. IEEE Transactions on Knowledge and Data Engineering 17(11), 1518–1528 (2005)CrossRefGoogle Scholar
  8. 8.
    Otero, F., Silva, M., Freitas, A., Nievola, J.: Genetic programming for attribute construction in data mining. In: Ryan, C., Soule, T., Keijzer, M., Tsang, E.P.K., Poli, R., Costa, E. (eds.) EuroGP 2003. LNCS, vol. 2610, pp. 384–393. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Ritthoff, O., Klinkenberg, R., Fischer, S., Mierswa, I.: A hybrid approach to feature selection and generation using an evolutionary algorithm. In: UK Workshop on Computational Intelligence (September 2002)Google Scholar
  10. 10.
    Shafti, L.S., Pérez, E.: Reducing complex attribute interaction through non-algebraic feature construction. In: Proc. of the IASTED International Conference on AIA, Innsbruck, Austria, pp. 359–365. Acta Press (February 2007)Google Scholar
  11. 11.
    Grunwald, P.D.: The Minimum Description Length Principle. MIT Press, Cambridge (2007)Google Scholar
  12. 12.
    Rissanen, J.: A universal prior for integers and estimation by minimum description length. The Annals of Statistics 11(2), 416–431 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Quinlan, J.R., Rivest, R.L.: Inferring decision trees using the minimum description length principle. Inf. Comput. 80(3), 227–248 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Quinlan, R.J.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo, California (1993)Google Scholar
  15. 15.
    Shannon, C.E.: A mathematical theory of communication. Bell System Tech. Journal 27, 379–423, 623–656 (1948)Google Scholar
  16. 16.
    Zupan, B., Bohanec, M., Bratko, I., Demsar, J.: Learning by discovering concept hierarchies. Artificial Intelligence 109(1-2), 211–242 (1999)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Leila S. Shafti
    • 1
  • Eduardo Pérez
    • 1
  1. 1.Escuela Plitécnica Superior, Universidad Autónoma de Madrid, E-28049Spain

Personalised recommendations