Advertisement

Decentralized Approaches to Adaptive Traffic Control

  • Arne Kesting
  • Martin Schönhof
  • Stefan Lämmer
  • Martin Treiber
  • Dirk Helbing
Part of the Understanding Complex Systems book series (UCS)

Keywords

Assistance System Road Section Adaptive Cruise Control Transportation Research Record Driving Direction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    European Commission: Energy & Transport, White Paper European transport policy for 2010: time to decide. COM (2001) 370 final (2001)Google Scholar
  2. 2.
    Sussman, J.S.: Perspectives on Intelligent Transportation Systems (ITS). Springer (2005)Google Scholar
  3. 3.
    Chowdhury, M.A., Sadek, A.: Fundamentals of Intelligent Transportation Systems Planning. Artech House (2003)Google Scholar
  4. 4.
    Kesting, A., Treiber, M., Schönhof, M., Helbing, D.: Extending adaptive cruise control (ACC) towards adaptive driving strategies. Transportation Research Record: Journal of the Transportation Research Board (2007) in print Google Scholar
  5. 5.
    Kesting, A., Treiber, M., Schönhof, M., Kranke, F., Helbing, D.: Jam-avoiding adaptive cruise control (ACC) and its impact on traffic dynamics. In: Traffic and Granular Flow ’05. Springer, Berlin (2007) 633–643Google Scholar
  6. 6.
    Schönhof, M., Kesting, A., Treiber, M., Helbing, D.: Coupled vehicle and information flows: message transport on a dynamic vehicle network. Physica A 363 (2006) 73–81CrossRefGoogle Scholar
  7. 7.
    Yang, X., Recker, W.: Simulation studies of information propagation in a self-organized distributed traffic information system. Transportation Research Part C: Emerging Technologies 13 (2005) 370–390Google Scholar
  8. 8.
    Wischhof, L., Ebner, A., Rohling, H.: Information dissemination in self-organizing intervehicle networks. IEEE Transactions on intelligent transportation systems 6 (2005) 90–101CrossRefGoogle Scholar
  9. 9.
    Wu, H., Fujimoto, R., Riley, G.: Analytical models for information propagation in vehicle-to-vehicle networks. In: Vehicular Technology Conference. Volume 6. (2004) 4548–4552Google Scholar
  10. 10.
    Green, M.: ‘How long does it take to stop?’ Methodological analysis of driver perception-brake times. Transportation Human Factors 2 (2000) 195–216CrossRefGoogle Scholar
  11. 11.
    Kranke, F., Poppe, H., Treiber, M., Kesting, A.: Driver assistance systems for active congestion avoidance in road traffic (in German). In Lienkamp, M., ed.: VDI-Berichte zur 22. VDI/VW Gemeinschaftstagung: Integrierte Sicherheit und Fahrerassistenzsysteme. Volume 1960. Association of German Engineers (VDI), Wolfsburg (2006) 375Google Scholar
  12. 12.
    Schönhof, M., Helbing, D.: Empirical features of congested traffic states and their implications for traffic modeling. Transportation Science 41 (2007) 1–32CrossRefGoogle Scholar
  13. 13.
    Bertini, R.L., Lindgren, R., Helbing, D., Schönhof, M.: Empirical analysis of flow features on a German autobahn. Transportation Research Board Annual Meeting, Washington, D.C. (2004)Google Scholar
  14. 14.
    Lindgren, R., Bertini, R., Helbing, D., Schönhof, M.: Toward Demonstrating the Predictability of Bottleneck Activation on German Autobahns. Transportation Research Record 1965 (2006) 12–22CrossRefGoogle Scholar
  15. 15.
    Daganzo, C., Cassidy, M., Bertini, R.: Possible explanations of phase transitions in highway traffic. Transportation Research B 33 (1999) 365–379Google Scholar
  16. 16.
    Treiber, M., Hennecke, A., Helbing, D.: Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62 (2000) 1805–1824CrossRefGoogle Scholar
  17. 17.
    Kesting, A., Treiber, M., Helbing, D.: MOBIL – A general lane-changing model for car-following models. Transportation Research Record: Journal of the Transportation Research Board (2007) in print Google Scholar
  18. 18.
    Kesting, A., Treiber, M., Lämmer, S., Schönhof, M., Helbing, D.: Decentralized approaches to adaptive traffic control and an extended level of service concept. In Gürlebeck, K., Könke, C., eds.: Proceedings of the 17th International Conference on the Applications of Computer Science and Mathematics in Architecture and Civil Engineering. Bauhaus University Weimar (2006)Google Scholar
  19. 19.
    Wu, H., Lee, J., Hunter, M., Fujimoto, R., Guensler, R.L., Ko, J.: Efficiency of simulated vehicle-to-vehicle message propagation in Atlanta, Georgia, I-75 Corridor. In: Transportation Research Record: Journal of the Transportation Research Board. Volume 1910., Transportation Research Board of the National Academies (2005) 82–89Google Scholar
  20. 20.
    Kerner, B., Rehborn, H.: Experimental features and characteristics of traffic jams. Phys. Rev. E 53 (1996) R1297–R1300CrossRefGoogle Scholar
  21. 21.
    Helbing, D., Hennecke, A., Treiber, M.: Phase diagram of traffic states in the presence of inhomogeneities. Phys. Rev. Lett. 82 (1999) 4360–4363CrossRefGoogle Scholar
  22. 22.
    Schönhof, M., Kesting, A., Treiber, M., Helbing, D.: Autonomous detection of jam-fronts and their anticipation from messages propagated by inter-vehicle communication. Transportation Research Record: Journal of the Transportation Research Board (2007) in print preprint (physics/0611261)Google Scholar
  23. 23.
    Helbing, D., Lämmer, S., Lebacque, J.P.: Self-organized control of irregular or perturbed network traffic. In: Deissenberg, C., Hartl, R.F., eds.: Optimal Control and Dynamic Games. Springer, Dortrecht (2005) 239–274CrossRefGoogle Scholar
  24. 24.
    Lämmer, S., Kori, H., Peters, K., Helbing, D.: Decentralised control of material or traffic flows in networks using phase-synchronisation. Physica A 363 (2006) 39–47CrossRefGoogle Scholar
  25. 25.
    Helbing, D., Lämmer, S.: Verfahren zur Koordination konkurrierender Prozesse oder zur Steuerung des Transports von mobilen Einheiten innerhalb eines Netzwerkes (pending patent DE 10 2005 023 742.8) (2005)Google Scholar
  26. 26.
    Brockfeld, E., Barlovic, R., Schadschneider, A., Schreckenberg, M.: Optimizing traffic lights in a cellular automaton model for city traffic. Physical Review E 64 (2001) 056132CrossRefGoogle Scholar
  27. 27.
    Huang, D., Huang, W.: Traffic signal synchronization. Physical Review E 67 (2003) 056124CrossRefGoogle Scholar
  28. 28.
    Fouladvand, M.E., Sadjadi, Z., Shaebani, M.R.: Optimized traffic flow at a single intersection: traffic responsive signalization. Journal of Physics A: Mathematical and General 37 (2004) 561–576CrossRefGoogle Scholar
  29. 29.
    Helbing, D., Molnàr, P.: Social force model for pedestrian dynamics. Physical Review E 51 (1995) 42824286Google Scholar
  30. 30.
    Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407 (2000) 487–490CrossRefGoogle Scholar
  31. 31.
    Helbing, D., Schönhof, M., Stark, H.U., Hołyst, J.A.: How individuals learn to take turns: Emergence of alternating cooperation in a congestion game and the prisoner’s dilemma. Advances in Complex Systems 8 (2005) 87–116CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Arne Kesting
    • 1
  • Martin Schönhof
    • 1
  • Stefan Lämmer
    • 1
  • Martin Treiber
    • 1
  • Dirk Helbing
    • 2
    • 3
  1. 1.Institute for Transport & EconomicsTU Dresden, Andreas-Schubert-Str. 23Germany
  2. 2.Chair of Sociology, in particular of Modeling & Simulation, ETH Zurich, UNO D11Szentháromság utca 2,Hungary
  3. 3.Collegium Budapest – Institute for Advanced StudyUniversitätstrasse 41Switzerland

Personalised recommendations