Logistics Networks: Coping with Nonlinearity and Complexity

  • Karsten Peters
  • Thomas Seidel
  • Stefan Lämmer
  • Dirk Helbing
Part of the Understanding Complex Systems book series (UCS)


Supply Chain Logistic System Supply Network Small Branch Logistics Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armbruster, D., Mikhailov, A.S. and Kaneko, K. (eds.) Networks of Interacting Machines: Production Organization in Complex Industrial Systems and Biological Cells World Scientific, Singapore (2005)Google Scholar
  2. 2.
    Armbruster, D. Marthaler, D., Ringhofer, C. SIAM J. Multiscale Modeling and Simulation 2 (2004) 43Google Scholar
  3. 3.
    Armbruster, D., de Beer, C., Freitag, M., Jagalski, T. and Ringhofer, C.: Physica A 363 (2006) 104CrossRefGoogle Scholar
  4. 4.
    Blekhman, I.: Synchronization in science and technology Asme Press, New York (1988)Google Scholar
  5. 5.
    Camazine, S., Deneubourg, J.–L., Franks, N.R., Sneyd, J., Theraulaz, G. and Bonabeau, E.: Self-Organization in Biological Systems. Princeton University Press, New Jersey (2003)Google Scholar
  6. 6.
    Chen, H, Yao, D.D. Fundamentals of queueing networks Springer, New York (2001)Google Scholar
  7. 7.
    Chowdhury, D., Santen, L. and Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329 (2000) 199–329CrossRefGoogle Scholar
  8. 8.
    Daganzo, C.: A Theory of Supply Chains. Springer, New York (2003)Google Scholar
  9. 9.
    Dorigo, M., Maniezzo V. and Colorni, A.: The ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man, Cybernetics, B 26, (1996), pp. 1Google Scholar
  10. 10.
    Diakaki, C., Dinopoulou, V., Aboudolas, K., Papageorgiou, M., Ben-Shabat, E., Seider, E., Leibov, A.: Transport Res. Board 1856 (2003) 202Google Scholar
  11. 11.
    Dussutour, A., Fourcassie, V., Helbing, D. and Deneubourg, J.-L.: Optimal traffic organization in ants under crowded conditions. Nature 428 (2004) 70CrossRefGoogle Scholar
  12. 12.
    Ermentrout, B.: J. Math. Biol. 15 (1991) 339Google Scholar
  13. 13.
    Helbing, D.: Rev. Mod. Phys. 73 (2001) 1067CrossRefGoogle Scholar
  14. 14.
    Helbing, D., Armbruster, D., Mikhailov, A. and Lefeber, E. (eds.) Special Issue: Information and Material Flows in Complex Networks. Physica A, 363 (2006)Google Scholar
  15. 15.
    Helbing, D.: New Journal of Physics 5 (2003) 90CrossRefGoogle Scholar
  16. 16.
    Helbing, D., Lämmer, S. and Lebacque, P. in: Deissenberg, C., Hartl, R.F. (eds.) Optimal Control and Dynamic Games. Springer, Dortrecht (2005)CrossRefGoogle Scholar
  17. 17.
    Helbing, D. : in: Radons, G. Neugebauer, R. (eds.) Nonlinear Dynamics of Production Systems Wiley, New York (2004)CrossRefGoogle Scholar
  18. 18.
    Helbing, D.: A section-based queueing-theoretical traffic model for congestion and travel time analysis in networks. Journal of Physics A: Mathematical and General 36 (2003) L593Google Scholar
  19. 19.
    Helbing, D. and Lämmer, S.: Verfahren zur Koordination konkurrierender Prozesse oder zur Steuerung des Transports von mobilen Einheiten innerhalb eines Netzwerkes [Method to Coordinate Competing Processes or to Control the Transport of Mobile Units within a Network] pending patent DE 10 2005 023 742.8.Google Scholar
  20. 20.
    Helbing, D., Johansson, A., Mathiesen, J., Jensen, M.H. and Hansen, A.: Analytical approach to continuous and intermittent bottleneck flows. Physical Review Letters 97 (2006) 168001Google Scholar
  21. 21.
    Helbing, D., Lämmer, S., Brenner, T. and Witt, U.: Physical Review E 70 (2004) 056118CrossRefGoogle Scholar
  22. 22.
    Helbing, D., Lämmer, S., Seidel, T., Seba, P. and Płatkowski, T.: Physical Review E 70 (2004) 066116Google Scholar
  23. 23.
    Hopp, W.J. and Spearman, M.L. Factory Physics. McGraw-Hill, Boston (2000)Google Scholar
  24. 24.
    Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence Springer, New York (1984)Google Scholar
  25. 25.
    Larsen, E.R., Morecroft, J.D.W. and Thomsen, J.S: urop. J. Op. Res. 119 (1999) 61CrossRefGoogle Scholar
  26. 26.
    Lämmer, S., Kori, H., Peters, K. and Helbing, D.: Physica A 363 (2006) 36Google Scholar
  27. 27.
    Mikhailov, A.S. and Calenbur, V. From Cells to Societies: Models of Complex Coherent Action Springer, Berlin (2002)Google Scholar
  28. 28.
    Nagatani, T.: Rep. Prog. Phys. 65 (2002) 1331CrossRefGoogle Scholar
  29. 29.
    Nakagaki, T., Yamada, H. and Ueda, T.: Biophys. Chem. 84 (2000) 195CrossRefGoogle Scholar
  30. 30.
    Papageorgiou, M.: Concise Encyclopedia of Traffic and Transportation Systems Pergamon Press, Oxford (1991)Google Scholar
  31. 31.
    Peters, K., Worbs, J., Parlitz, U. and Wiendahl, H.P.: In: Radons, G. and Neugebauer, R.: (eds.) Nonlinear Dynamics of Production Systems. Wiley, New York (2004) pp. 39–54 .CrossRefGoogle Scholar
  32. 32.
    Peters, K., Parlitz, U.: Int. J. Bifurcation and Chaos 13 (2003) 2575Google Scholar
  33. 33.
    Peters, K., Johansson, A. and Helbing, D.: Swarm intelligence beyond stigmergy: Traffic optimization in ants. Kuenstliche Intelligenz 4 (2005) 11Google Scholar
  34. 34.
    Peters, K., Johansson, A., Dussutour, A. and Helbing, D.: Analytical and numerical investigation of ant behaviour under crowded conditions. Advances in Complex Systems 9 (2006) 337–352CrossRefGoogle Scholar
  35. 35.
    Pikovsky, A., Rosenblum, M. and Kurths, J.: Synchronization: a universal concept in nonlinear sciences Cambridge University Press (2001)Google Scholar
  36. 36.
    Ponzi, A., Yasutomi, A. and Kaneko, K.: A non-linear model of economic production processes. Physica A 324 (2003) 372CrossRefGoogle Scholar
  37. 37.
    Radons, G. and Neugebauer R. (eds.) Nonlinear Dynamics of Production Systems Wiley, New York (2004)Google Scholar
  38. 38.
    Rem, B. and Armbruster, D.: Chaos 13 (2003) 128CrossRefGoogle Scholar
  39. 39.
    Strogatz, S.H.: Nature 410 (2001) 268CrossRefGoogle Scholar
  40. 40.
    Tero, A., Kobayashi, R. and Nakagaki, T.: Physica D 205 (2005) 125CrossRefGoogle Scholar
  41. 41.
    Winfree, A.T.: The Geometry of Biological Time. Springer, New York (1980)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Karsten Peters
    • 1
  • Thomas Seidel
    • 2
  • Stefan Lämmer
    • 2
  • Dirk Helbing
    • 3
    • 4
  1. 1.Institute for Logistics and AviationTU Dresden
  2. 2.Institute for Transport and EconomicsTU Dresden
  3. 3.Chair of Sociology, in particular of Modeling & Simulation, ETH Zurich UNO D11Universitätstrasse 41Switzerland
  4. 4.Collegium Budapest – Institute for Advanced StudySzenth´aroms´ag u. 2Hungary

Personalised recommendations