Managing Complexity: An Introduction

  • Dirk Helbing
  • Stefan Lämmer
Part of the Understanding Complex Systems book series (UCS)


Catastrophe Theory Congestion Game Hierarchical Network Panic Coordination Control Attempt 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Haken, H.: Synergetics. Springer, Berlin Heidelberg New York (1977)Google Scholar
  2. 2.
    Ausiello, G., Crescenzi, P., Gambosi G., et al: Complexity and Approximation – Combinatorial optimization problems and their approximability properties. Springer Berlin Heidelberg New York (1999)Google Scholar
  3. 3.
    Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Perseus (2001)Google Scholar
  4. 4.
    Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer Berlin Heidelberg New York (1984)Google Scholar
  5. 5.
    Pikovsky, A., Rosenblum, M. and Kurths, J.: Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press (2003)Google Scholar
  6. 6.
    Manrubia, S.C., Mikhailov, A.S. and Zanette, D.H.: Emergence of Dynamical Order. Synchronization Phenomena in Complex systems World Scientific, Singapore (2004)Google Scholar
  7. 7.
    Helbing, D.: Traffic and related self-driven many-particle systems. Reviews of Modern Physics 73 (2001) 1067Google Scholar
  8. 8.
    Bonabeau, E., Dorigo, M. and Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute Studies in the Sciences of Complexity Proceedings (1999)Google Scholar
  9. 9.
    Kesting, A., Schönhof, M., Lämmer, S., Treiber, M. and D. Helbing, Decentralized approaches to adaptive traffic control, see pp. 179ff in this book.Google Scholar
  10. 10.
    Helbing, D. and Lämmer, S.: Verfahren zur Koordination konkurrierender Prozesse oder zur Steuerung des Transports von mobilen Einheiten innerhalb eines Netzwerkes [Method to Coordinate Competing Processes or to Control the Transport of Mobile Units within a Network]. Pending patent DE 10 2005 023 742.8 (2005)Google Scholar
  11. 11.
    Axelrod, R.: The Evolution of Cooperation. Basic Books (1985)Google Scholar
  12. 12.
    von Neumann, J., Morgenstern, O., Rubinstein, A. and Kuhn H.W.: Theory of Games and Economic Behavior. Princeton University Press (2004)Google Scholar
  13. 13.
    Schelling, T.C.: The Strategy of Conflict. Harvard University Press (2006)Google Scholar
  14. 14.
    Helbing, D., Schönhof, M., Stark, H.-U. and Holyst, J.A.: How individuals learn to take turns: Emergence of alternating cooperation in a congestion game and the prisoner’s dilemma. Advances in Complex Systems 8 (2005) 87CrossRefGoogle Scholar
  15. 15.
    Glance, N.S. and Huberman, B.A.: The dynamics of social dilemmas. Scientific American 270 (1994) 76CrossRefGoogle Scholar
  16. 16.
    Hardin, G.: The Tragedy of the Commons. Science 162 (1968) 1243CrossRefGoogle Scholar
  17. 17.
    Zeeman, E.C.: Catastrophe Theory. Addison-Wesley London (1977)Google Scholar
  18. 18.
    Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press (1971)Google Scholar
  19. 19.
    Schroeder, M.: Fractals, Chaos, Power Laws: Minutes from an Infinite Paradise. Freeman (1992)Google Scholar
  20. 20.
    Helbing, D., Ammoser, H. and Kühnert, C.: Disasters as extreme events and the importance of network interactions for disaster response management. In: Albeverio, S., Jentsch, V. and Kantz, H.(eds.): The Unimaginable and Unpredictable: Extreme Events in Nature and Society. Springer Berlin Heidelberg New York (2005) 319–348Google Scholar
  21. 21.
    Bak, P., Tang, C. and Wiesenfeld, K.: Self-organized criticality: An explanation of 1/f noise, Phys. Rev. Lett. 59 (1987) 381CrossRefGoogle Scholar
  22. 22.
    Bak, P.: How Nature Works: The Science of Self-Organized Criticality. Copernicus New York (1996)Google Scholar
  23. 23.
    Aleksiejuk, A. and Hołyst, J.A.: A simple model of bank bankruptcies. Physica A 299(1-2), 198–204 (2001)CrossRefGoogle Scholar
  24. 24.
    Aleksiejuk, A., Hołyst, J.A. and Kossinets, G.: Self-organized criticality in a model of collective bank bankruptcies. International Journal of Modern Physics C 13 (2002) 333CrossRefGoogle Scholar
  25. 25.
    Tubbs, S.L.: A Systems Approach to Small Group Interaction. McGraw-Hill Boston (2003)Google Scholar
  26. 26.
    Arrow, H., McGrath, J.E. and Berdahl, J.L.: Small Groups as Complex Systems: Formation, Coordination, Development, and Adaptation. Sage (2000)Google Scholar
  27. 27.
    Chen, K.-Y., Fine, L.R. and Huberman, B.A: Predicting the Future. Information Systems Frontiers 5 (2003) 47CrossRefGoogle Scholar
  28. 28.
    Mikhailov, A.S: Artificial life: an engineering perspective. In: Friedrich, R. and Wunderlin, A. (eds.): Evolution of Dynamical Structures in Complex Systems. Springer Berlin Heidelberg New York (1992) 301–312Google Scholar
  29. 29.
    Ulschak, F-L.: Small Group Problem Solving: An Aid to Organizational Effectiveness. Addison-Wesley Reading Mass. (1981)Google Scholar
  30. 30.
    Gautrais, J., Theraulaz, G., Deneubourg, J.-L. and Anderson, C.: Emergent polyethism as a consequence of increased colony size in insect societies. Journal of Theoretical Biology 215 (2002) 363CrossRefGoogle Scholar
  31. 31.
    Helbing, D., Ammoser, H. and Kühnert, C.: Information flows in hierarchical networks and the capability of organizations to successfully respond to failures, crises, and disasters. Physica A 363 (2006) 141CrossRefGoogle Scholar
  32. 32.
    Adamic, L.A. and Adar, E.: Friends and neighbors on the web, preprint˜rizos/web10.pdfGoogle Scholar
  33. 33.
    Stauffer, D. and de Oliveira, P.M.C.: Optimization of hierarchical structures of information flow. International Journal of Modern Physics C 17 (2006) 1367CrossRefGoogle Scholar
  34. 34.
    Watts, D.J. and Strogatz, S.H.: Collective dynamics of smallworld networks. Nature 393 (1998) 440CrossRefGoogle Scholar
  35. 35.
    Helbing, D.: Quantitative Sociodynamics. Stochastic Methods and Models of Social Interaction Processes Kluwer Academic, Dordrecht (1995)Google Scholar
  36. 36.
    Christen, M., Bongard, G., Pausits, A., Stoop, N. and Stoop, R.: Managing autonomy and control in economic systems.Google Scholar
  37. 37.
    Fasold, D.: Optimierung logistischer Prozessketten am Beispiel einer Nassätzanlage in der Halbleiterproduktion. MA thesis, TU Dresden (2001)Google Scholar
  38. 38.
    Helbing, D., Seidel, T., Lämmer, S. and Peters, K.: Self-organization principles in supply networks and production systems. In: Chakrabarti, B.K., Chakraborti and A., Chatterjee, A. (eds.): Econophysics and Sociophysics - Trends and Perspectives Wiley Weinheim (2006) 535–558Google Scholar
  39. 39.
    Helbing, D. and Platkowski, T.: Self-organization in space and induced by fluctuations. International Journal of Chaos Theory and Applications 5 47–62. (2000)Google Scholar
  40. 40.
    Helbing, D.: Dynamic decision behavior and optimal guidance through information services: Models and experiments. In: Schreckenberg, M. and Selten, R. (eds.): Human Behaviour and Traffic Networks Springer Heidelberg Berlin New York (2004) 47–95Google Scholar
  41. 41.
    Helbing, D., Treiber, M. and Saam, N.J.: Analytical investigation of innovation dynamics considering stochasticity in the evaluation of fitness. Physical Review E 71 (2005) 067101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Dirk Helbing
    • 1
    • 2
  • Stefan Lämmer
    • 3
  1. 1.Chair of Sociology, in particular of Modeling & SimulationETH Zurich, UNO D11,Universitätstrasse 41Switzerland
  2. 2.Collegium Budapest – Institute for Advanced Study Szentháromság utca 2Hungary
  3. 3.Institute for Transport & Economics, TU DresdenGermany

Personalised recommendations