Description Logic Programs Under Probabilistic Uncertainty and Fuzzy Vagueness

  • Thomas Lukasiewicz
  • Umberto Straccia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4724)


This paper is directed towards an infrastructure for handling both uncertainty and vagueness in the Rules, Logic, and Proof layers of the Semantic Web.More concretely, we present probabilistic fuzzy description logic programs, which combine fuzzy description logics, fuzzy logic programs (with stratified nonmonotonic negation), and probabilistic uncertainty in a uniform framework for the Semantic Web. We define important concepts dealing with both probabilistic uncertainty and fuzzy vagueness, such as the expected truth value of a crisp sentence and the probability of a vague sentence. Furthermore, we describe a shopping agent example, which gives evidence of the usefulness of probabilistic fuzzy description logic programs in realistic web applications. In the extended report, we also provide algorithms for query processing in probabilistic fuzzy description logic programs, and we delineate a special case where query processing can be done in polynomial time in the data complexity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berners-Lee, T.: Weaving the Web. Harper, San Francisco (1999)Google Scholar
  2. 2.
    Callan, J.: Distributed information retrieval. In: Croft, W.B. (ed.) Advances in InformationRetrieval, pp. 127–150. Kluwer, Dordrecht (2000)Google Scholar
  3. 3.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the Semantic Web. In: Proc. KR 2004, pp. 141–151 (2004)Google Scholar
  4. 4.
    Fensel, D., Wahlster, W., Lieberman, H., Hendler, J. (eds.): Spinning the Semantic Web: Bringing the World Wide Web to Its Full Potential. MIT Press, Cambridge (2002)Google Scholar
  5. 5.
    Flaminio, T., Godo, L.: A logic for reasoning about the probability of fuzzy events. Fuzzy Sets and Systems 158(6), 625–638 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Fuhr, N.: A decision-theoretic approach to database selection in networked IR. ACM Trans. Inf. Syst. 3(17), 229–249 (1999)CrossRefGoogle Scholar
  7. 7.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)CrossRefMATHGoogle Scholar
  8. 8.
    Horrocks, I., Patel-Schneider, P.F.: Reducing OWL entailment to description logic satisfiability. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003, vol. 2870, pp. 17–29. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Lukasiewicz, T.: Probabilistic description logic programs. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 737–749. Springer, Heidelberg (2005) (Extended version in Int. J. Approx. Reason. 45(2), 288–307 (2007)CrossRefGoogle Scholar
  10. 10.
    Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics for the Semantic Web. In: Proc. RuleML 2006, pp. 89–96 (2006) (Extended version in Fundamenta Informaticae (to appear))Google Scholar
  11. 11.
    Lukasiewicz, T., Straccia, U.: Uncertainty and vagueness in description logic programs for the Semantic Web. Report 1843-07-02, Institut für Informations systeme, TU Wien (2007)Google Scholar
  12. 12.
    Nottelmann, H., Straccia, U.: Information retrieval and machine learning for probabilisticschema matching. Inf. Process. Manage. 43(3), 552–576 (2007)CrossRefGoogle Scholar
  13. 13.
    Poole, D.: The independent choice logic for modelling multiple agents under uncertainty. Artif. Intell. 94(1-2), 7–56 (1997)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Renda, M.E., Straccia, U.: Web metasearch: Rank vs. score-based rank aggregation methods. In: Proc. SAC 2003, pp. 841–846 (2003)Google Scholar
  15. 15.
    Straccia, U.: Afuzzy description logic for the SemanticWeb. In: Sanchez, E. (ed.) Fuzzy Logic and the SemanticWeb, Capturing Intelligence, ch. 4, pp. 73–90. Elsevier, Amsterdam (2006)Google Scholar
  16. 16.
    Straccia, U.: Fuzzy description logic programs. In: Proc. IPMU 2006, pp. 1818–1825 (2006)Google Scholar
  17. 17.
    Straccia, U., Troncy, R.: oMAP: Combining classifiers for aligning automatically OWL ontologies. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z. (eds.) WISE 2005, vol. 3806, pp. 133–147. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Straccia, U., Troncy, R.: Towards distributed information retrieval in the Semantic Web. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 378–392. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    W3C. OWL web ontology language overview, W3C Recommendation (February 10, 2004), Available at

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Thomas Lukasiewicz
    • 1
    • 2
  • Umberto Straccia
    • 3
  1. 1.DISSapienza Università di RomaRomeItaly
  2. 2.Institut für InformationssystemeTU WienViennaAustria
  3. 3.ISTI-CNRPisaItaly

Personalised recommendations