COBA 2.0: A Consistency-Based Belief Change System

  • James P. Delgrande
  • Daphne H. Liu
  • Torsten Schaub
  • Sven Thiele
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4724)

Abstract

We describe COBA 2.0, an implementation of a consistency-based framework for expressing belief change, focusing here on revision and contraction, with the possible incorporation of integrity constraints. This general framework was first proposed in [1]; following a review of this work, we present COBA 2.0’s high-level algorithm, work through several examples, and describe our experiments. A distinguishing feature of COBA 2.0 is that it builds on SAT-technology by using a module comprising a state-of-the-art SAT-solver for consistency checking. As well, it allows for the simultaneous specification of revision, multiple contractions, along with integrity constraints, with respect to a given knowledge base.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Delgrande, J., Schaub, T.: A consistency-based approach for belief change. Artificial Intelligence 151, 1–41 (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Alchourrón, C., Gärdenfors, P., Makinson, D.: On the logic of theory change: Partial meet functions for contraction and revision. Journal of Symbolic Logic 50, 510–530 (1985)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Fuhrmann, A.: Relevant Logics, Modal Logics, and Theory Change. PhD thesis, Australian National University, Australia (1988)Google Scholar
  4. 4.
    Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base and revising it. In: Gärdenfors, P. (ed.) Belief Revision, pp. 183–203. Cambridge University Press, Cambridge (1992)CrossRefGoogle Scholar
  5. 5.
    Kowalski, R.: Logic for data description. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, Plenum, pp. 77–103 (1978)Google Scholar
  6. 6.
    Sadri, F., Kowalski, R.: A theorem-proving approach to database integrity. In: Minker, J. (ed.) Foundations of Deductive Databases and Logic Programming, pp. 313–362. MorganKaufmann, San Francisco (1987)Google Scholar
  7. 7.
    Reiter, R.: Towards a logical reconstruction of relational database theory. In: Brodie, M., Mylopoulos, J., Schmidt, J. (eds.) On Conceptual Modelling, pp. 191–233. Springer, Heidelberg (1984)CrossRefGoogle Scholar
  8. 8.
    A satisfiability library for java, http://www.sat4j.org
  9. 9.
  10. 10.
    Delgrande, J., Schaub, T., Tompits, H., Woltran, S.: On computing belief change operations using quantified boolean formulas. Journal of Logic and Computation 14, 801–826 (2004)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Egly, U., Eiter, T., Tompits, H., Woltran, S.: Solving advanced reasoning tasks using quantified Boolean formulas. In: Proceedings of the AAAI National Conference on Artificial Intelligence, pp. 417–422 (2000)Google Scholar
  12. 12.
    Delgrande, J., Schaub, T.: Consistency-based approaches to merging knowledge bases. Journal of Applied Logics (to appear)Google Scholar
  13. 13.
    Benferhat, S., Kaci, S., Berre, D., Williams, M.A.: Weakening conflicting information for iterated revision and knowledge integration. Artificial Intelligence 153, 339–371 (2004)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • James P. Delgrande
    • 1
  • Daphne H. Liu
    • 1
  • Torsten Schaub
    • 2
  • Sven Thiele
    • 2
  1. 1.School of Computing ScienceSimon Fraser UniversityBurnaby, B.C.Canada
  2. 2.Institut für InformatikUniversität PotsdamPotsdamGermany

Personalised recommendations