Abstractions of Multi-agent Systems

  • Constantin Enea
  • Catalin Dima
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4696)


With the recent development of many model-checkers for the temporal logic of knowledge, abstraction techniques are necessary to increase the size of the systems that can be verified. In this paper, we introduce several abstraction techniques for interpreted systems and we prove several preservation results. These results consider the temporal logic of knowledge under Kleene’s 3-valued interpretation along infinite and maximal finite paths.


Induction Hypothesis Abstract State Temporal Logic Multiagent System Similarity Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chechik, M., Easterbrook, S.M., Petrovykh, V.: Model-checking over multi-valued logics. In: Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 72–98. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Proceedings of POPL, pp. 238–252 (1977)Google Scholar
  3. 3.
    Dams, D.: Abstract Interpretation and Partial Refinement for Model Checking. PhD thesis, Technische Universität Eindhoven (1996)Google Scholar
  4. 4.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  5. 5.
    Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer, Heidelberg (2004)Google Scholar
  6. 6.
    Ginsberg, M.: Multivalued logics. A uniform approach to inference in artificial intelligence. Computational Intelligence 4, 265–316 (1988)CrossRefGoogle Scholar
  7. 7.
    Konikowska, B., Penczek, W.: Model checking for multivalued logic of knowledge and time. In: Proceedings of AAMAS, pp. 169–176 (2006)Google Scholar
  8. 8.
    Lomuscio, A., Raimondi, F.: MCMAS: A model checker for multi-agent systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006 and ETAPS 2006. LNCS, vol. 3920, pp. 450–454. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems. Specification. Springer, Heidelberg (1992)Google Scholar
  10. 10.
    O’Neill, K.R., Halpern, J.Y.: Secrecy in multiagent systems. CoRR, cs.CR/0307057 (2003)Google Scholar
  11. 11.
    Tiplea, F.L., Enea, C.: Abstractions of data types. Acta Informatica 42(8-9), 639–671 (2006)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Constantin Enea
    • 1
    • 2
  • Catalin Dima
    • 1
  1. 1.LACL, University Paris 12, 61 av. du Général de Gaulle, 94010 CréteilFrance
  2. 2.University “Al. I. Cuza”, Str. General Berthlot 16, 740083, IaşiRomania

Personalised recommendations