Timed Calculus of Cryptographic Communication

  • Johannes Borgström
  • Olga Grinchtein
  • Simon Kramer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4691)


We extend the (core) Calculus of Cryptographic Communication (C3) with real time, e.g., time stamps and timed keys. We illustrate how to use this extended calculus (tC3) on a specification and verification case study, namely the failure of the Wide-Mouthed-Frog protocol in its original, e.g., timed, version.


Applied process calculi timed cryptographic protocols formal modelling model-based specification and verification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schneider, S.: Concurrent and Real-Time Systems. Wiley, Chichester (1999)Google Scholar
  2. 2.
    Evans, N., Schneider, S.: Analysing time-dependent security properties in CSP using PVS. In: Proceedings of the European Symposium on Research in Computer Security (2000)Google Scholar
  3. 3.
    Gorrieri, R., Martinelli, F.: A simple framework for real-time cryptographic protocol analysis with compositional proof rules. Science of Computer Programming 50(1–3) (2004)Google Scholar
  4. 4.
    Haack, C., Jeffrey, A.: Timed Spi-calculus with types for secrecy and authenticity. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bozga, L., Ene, C., Lakhnech, Y.: A symbolic decision procedure for cryptographic protocols with time stamps. The Journal of Logic and Algebraic Programming 65 (2005)Google Scholar
  6. 6.
    Gong, L.: A security risk of depending on synchronized clocks. ACM SIGOPS Operating Systems Review 26(1) (1992)Google Scholar
  7. 7.
    Lamport, L.: Real time is really simple. Technical Report MSR-TR-2005-30, Microsoft Research (2005)Google Scholar
  8. 8.
    Borgström, J., Kramer, S., Nestmann, U.: Calculus of Cryptographic Communication. In: Proceedings of the LICS-Affiliated Workshop on Foundations of Computer Security and Automated Reasoning for Security Protocol Analysis (2006)Google Scholar
  9. 9.
    Kramer, S.: Logical concepts in cryptography. Cryptology ePrint Archive, Report 2006/262 (2006),
  10. 10.
    Kramer, S.: Timed Cryptographic Protocol Logic presented at the Nordic Workshop on Programming Theory (2006)Google Scholar
  11. 11.
    Haack, C., Jeffrey, A.: Pattern-matching Spi-calculus. In: Proceedings of the Workshop on Formal Aspects in Security and Trust (2004)Google Scholar
  12. 12.
    Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Journal of Computer Security 6(1) (1998)Google Scholar
  13. 13.
    Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational soundness of formal encryption). Journal of Cryptology 15(2) (2002)Google Scholar
  14. 14.
    Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Johannes Borgström
    • 1
  • Olga Grinchtein
    • 2
  • Simon Kramer
    • 3
  1. 1.EECS, Technical University of Berlin 
  2. 2.IT, Uppsala University 
  3. 3.Ecole Polytechnique Fédérale de Lausanne (EPFL) 

Personalised recommendations