Advertisement

Building Online Performance Models of Grid Middleware with Fine-Grained Load-Balancing: A Globus Toolkit Case Study

  • Ramon Nou
  • Samuel Kounev
  • Jordi Torres
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4748)

Abstract

As Grid computing increasingly enters the commercial domain, performance and Quality of Service (QoS) issues are becoming a major concern. To guarantee that QoS requirements are continuously satisfied, the Grid middleware must be capable of predicting the application performance on the fly when deciding how to distribute the workload among the available resources. One way to achieve this is by using online performance models that get generated and analyzed on the fly. In this paper, we present a novel case study with the Globus Toolkit in which we show how performance models can be generated dynamically and used to provide online performance prediction capabilities. We have augmented the Grid middleware with an online performance prediction component that can be called at any time during operation to predict the Grid performance for a given resource allocation and load-balancing strategy. We evaluate the quality of our performance prediction mechanism and present some experimental results that demonstrate its effectiveness and practicality. The framework we propose can be used to design intelligent QoS-aware resource allocation and admission control mechanisms.

Keywords

Performance Prediction Schedule Strategy Service Request Grid Environment Online Performance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Foster, I., Kesselman, C., Nick, J.M., Tuecke, S.: Grid Services for Distributed System Integration. Computer 35(6), 37–46 (2002)CrossRefGoogle Scholar
  2. 2.
    OGF: Open Grid Forum, http://www.ogf.org
  3. 3.
    Menascé, D., Casalicchio, E.: A Framework for Resource Allocation in Grid Computing. In: Proceedings of the The IEEE Computer Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunications Systems, IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  4. 4.
    Menascé, D.A., Almeida, V.A.F., Dowdy, L.W.: Performance by Design. Prentice-Hall, Englewood Cliffs (2004)Google Scholar
  5. 5.
    Menascé, D., Bennani, M., Ruan, H.: On the Use of Online Analytic Performance Models in Self-Managing and Self-Organizing Computer Systems. In: Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A.P.A., van Steen, M. (eds.) SELF-STAR 2004. LNCS, vol. 3460, Springer, Heidelberg (2005)Google Scholar
  6. 6.
    Foster, I.T.: Globus Toolkit Version 4: Software for Service-Oriented Systems. In: Proceedings of the 2005 IFIP International Conference on Network and Parallel Computing, pp. 2–13 (2005)Google Scholar
  7. 7.
    Kounev, S.: Performance Modeling and Evaluation of Distributed Component-Based Systems using Queueing Petri Nets. IEEE Transactions on Software Engineering 32(7), 486–502 (2006)CrossRefGoogle Scholar
  8. 8.
    Foster, I., Kesselman, C.: The Grid 2: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (2003)Google Scholar
  9. 9.
    Nou, R., Julia, F., Carrera, D., Hogan, K., Caubet, J., Labarta, J., Torres, J.: Monitoring and analysis framework for grid middleware. In: PDP, pp. 129–133. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  10. 10.
    Nou, R., Juliá, F., Torres, J.: Should the grid middleware look to self-managing capabilities? In: The 8th International Symposium on Autonomous Decentralized Systems (ISADS 2007), Sedona, Arizona (2007)Google Scholar
  11. 11.
    Nou, R., Juliá, F., Torres, J.: The need for self-managed access nodes in grid environments. In: 4th IEEE Workshop on Engineering of Autonomic and Autonomous Systems (EASe 2007), IEEE Computer Society Press, Los Alamitos (2007)Google Scholar
  12. 12.
    Bause, F.: ”QN + PN = QPN” - Combining Queueing Networks and Petri Nets. Technical report no.461, Department of CS, University of Dortmund, Germany (1993)Google Scholar
  13. 13.
    Bause, F., Buchholz, P., Kemper, P.: Integrating Software and Hardware Performance Models Using Hierarchical Queueing Petri Nets. In: Proc. of the 9. ITG / GI - Fachtagung Messung, Modellierung und Bewertung von Rechen- und Kommunikationssystemen (1997)Google Scholar
  14. 14.
    Kounev, S., Buchmann, A.: Performance modelling of distributed e-business applications using queuing petri nets. In: Proc. of the 2003 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS 2003), IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  15. 15.
    Bause, F., Buchholz, P.: Queueing Petri Nets with Product Form Solution. Performance Evaluation 32(4), 265–299 (1998)CrossRefGoogle Scholar
  16. 16.
    Kounev, S., Buchmann, A.: SimQPN - a tool and methodology for analyzing queueing Petri net models by means of simulation. Performance Evaluation 63(4-5), 364–394 (2006)CrossRefGoogle Scholar
  17. 17.
    Jost, G., Jin, H., Labarta, J., Gimenez, J., Caubet, J.: Performance analysis of multilevel parallel applications on shared memory architectures. International Parallel and Distributed Processing Symposium (IPDPS), Nice, France (2003)Google Scholar
  18. 18.
    Denning, P.J., Buzen, J.P.: The Operational Analysis of Queueing Network Models. ACM Computing Surveys 10(3), 225–261 (1978)zbMATHCrossRefGoogle Scholar
  19. 19.
    Menascé, D., Gomaa, H.: A Method for Desigh and Performance Modeling of Client/Server Systems. IEEE Transactions on Software Engineering 26(11) (2000)Google Scholar
  20. 20.
    Varga, A.: The OMNeT++ discrete event simulation system. In: European Simulation Multiconference (ESM’2001) (June 2001)Google Scholar
  21. 21.
    Nou, R., Guitart, J., Torres, J.: Simulating and modeling secure web applications. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2006. LNCS, vol. 3991, pp. 84–91. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Ramon Nou
    • 1
  • Samuel Kounev
    • 2
  • Jordi Torres
    • 1
  1. 1.Barcelona Supercomputing Center (BSC), Technical University of Catalonia (UPC), BarcelonaSpain
  2. 2.University of Cambridge Computer Laboratory, Cambridge, CB3 0FDUK

Personalised recommendations