Algebraic Visualization of Relations Using RelView

  • Rudolf Berghammer
  • Gunther Schmidt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4770)


For graphs there exist highly elaborated drawing algorithms. We concentrate here in an analogous way on visualizing relations represented as Boolean matrices as, e.g., in RelView. This means rearranging the matrix appropriately, permuting rows and columns simultaneously or independently as required. In this way, many complex situations may successfully be handled in various application fields. We show how relation algebra and RelView can be combined to solve such tasks.


Relation Algebra Formal Concept Analysis Binary Decision Diagram Boolean Matrix Partial Order Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Behnke, R., et al.: ReLView – A system for calculation with relations and relational programming. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, pp. 318–321. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Berghammer, R., Hoffmann, T.: Modelling sequences within the RelView system. J. Universal Comput. Sci. 7, 107–123 (2001)zbMATHMathSciNetGoogle Scholar
  3. 3.
    Berghammer, R., Leoniuk, B., Milanese, U.: Implementation of relation algebra using binary decision diagrams. In: de Swart, H. (ed.) RelMiCS 2001. LNCS, vol. 2561, pp. 241–257. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Berghammer, R., Neumann, F.: RelView – An OBDD-based Computer Algebra system for relations. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 40–51. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bona, M.: A walk through combinatorics: An introduction to combinatorics and graph theory. World Scientific Publishing, Singapore (2002)zbMATHGoogle Scholar
  6. 6.
    Colorni, A., Paruccini, M., Roy, B.: A-MCD-A – Multiple criteria decision aiding. Joint Research Centre of the European Commission (2001)Google Scholar
  7. 7.
    de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.): Theory and Applications of Relational Structures as Knowledge Instruments. LNCS, vol. 2929. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  8. 8.
    de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.): Theory and Applications of Relational Structures as Knowledge Instruments II. LNCS (LNAI), vol. 4342. Springer, Heidelberg (2006)Google Scholar
  9. 9.
    di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph drawing – Algorithms for the visualization of graphs. Prentice-Hall, Englewood Cliffs (1999)zbMATHGoogle Scholar
  10. 10.
    Fishburn, P.: On the construction of weak orders from fragmentary information. Psychometrika 38, 459–472 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Fishburn, P.: Interval orders and interval graphs. Wiley, Chichester (1985)zbMATHGoogle Scholar
  12. 12.
    Guttmann, L.: A basis for scaling qualitative data. American Sociological Review 9, 139–150 (1944)CrossRefGoogle Scholar
  13. 13.
    Gansner, E.R., North, S.C., Vo, K.P.: DAG – A program that draws directed graphs. Software – Practice and Experience 17, 1047–1062 (1988)CrossRefGoogle Scholar
  14. 14.
    Ganter, B., Wille, R.: Formal concept analysis. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  15. 15.
    Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Proc. Letters 31, 7–15 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. LNCS, vol. 2025. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  17. 17.
    Öztürk, M., Tsoukias, A., Vincke, P.: Preference modelling. In: Ehrgott, M., Greco, S., Figueira, J. (eds.) Multiple criteria decision analysis: State of the art surveys. Int. Series in Operat. Res. and Manag. Sci, vol. 78, pp. 27–71. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Schmidt, G., Ströhlein, T.: Relationen und Graphem. Springer. Available also in English: Relations and graphs. In: EATCS Monographs on Theoret. Comput. Sci., Springer, Heidelberg (1993)Google Scholar
  19. 19.
    Scott, D., Suppes, P.: Foundational aspects of the theories of measurement. J. Symbolic Logic 23, 113–128 (1958)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Szpilrajn, E.: Sur l’extension de l’ordre partiel. Fund. Math. 16, 386–389 (1930)zbMATHGoogle Scholar
  21. 21.
    Tarski, A.: On the calculus of relations. J. Symbolic Logic 6, 73–89 (1941)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Rudolf Berghammer
    • 1
  • Gunther Schmidt
    • 2
  1. 1.Institut für Informatik, Christian-Albrechts-Universität Kiel, Olshausenstraße 40, 24098 KielGermany
  2. 2.Fakultät für Informatik, Universität der Bundeswehr München, 85577 NeubibergGermany

Personalised recommendations