Advertisement

Indexing Mobile Objects on the Plane Revisited

  • Spyros Sioutas
  • Konstantinos Tsakalidis
  • Kostas Tsihlas
  • Christos Makris
  • Yannis Manolopoulos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4690)

Abstract

We present a set of time-efficient approaches to index objects moving on the plane to efficiently answer range queries about their future positions. Our algorithms are based on previously described solutions as well as on the employment of efficient data structures. Finally, an experimental evaluation is included that shows the performance, scalability and efficiency of our methods.

Keywords

Spatio-Temporal Databases Indexing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P.K., Arge, L., Erickson, J., Franciosa, P.G., Vitter, J.S.: Efficient Searching with Linear Constraints. Journal of Computer and System Sciences 61(2), 194–216 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Agarwal, P.K., Arge, L., Erickson, J.: Indexing Moving Points. In: Proceedings 19th ACM Symposium on Principles of Database Systems (PODS), Dallas, TX, pp. 175–186 (2000)Google Scholar
  3. 3.
    Arge, L., Samoladas, V., Vitter, J.S.: On Two-Dimensional Indexability and Optimal Range Search Indexing. In: Proceedings 18th ACM Symposium on Principles of Database Systems (PODS), Philadelphia, PA, pp. 346–357 (1999)Google Scholar
  4. 4.
    Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: an Efficient and Robust Access Method for Points and Rectangles. In: Proceedings ACM International Conference on Management of Data (SIGMOD), Atlantic City, NJ, pp. 322–331 (1990)Google Scholar
  5. 5.
    Chazelle, B.: Optimal Algorithms for Computing Depths and Layers, Brown University, Technical Report CS-83-13 (1983)Google Scholar
  6. 6.
    Chazelle, B., Guibas, L., Lee, D.L.: The Power of Geometric Duality. In: Proceedings 24th IEEE Annual Symposium on Foundations of Computer Science (FOCS), Tucson, AZ, pp. 217–225 (1983)Google Scholar
  7. 7.
    Chazelle, B.: Filtering Search: a New Approach to Query Answering. SIAM Journal on Computing 15(3), 703–724 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Chazelle, B., Cole, R., Preparata, F.P., Yap, C.K.: New Upper Bounds for Neighbor Searching. Information and Control 68(1-3), 105–124 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Comer, D.: The Ubiquitous B-Tree. ACM Computing Surveys 11(2), 121–137 (1979)zbMATHCrossRefGoogle Scholar
  10. 10.
    Dietz, P., Raman, R.: A Constant Update Time Finger Search Tree. Information Processing Letters 52(3), 147–154 (1994)zbMATHCrossRefGoogle Scholar
  11. 11.
    Gaede, V., Gunther, O.: Multidimensional Access Methods. ACM Computing Surveys 30(2), 170–231 (1998)CrossRefGoogle Scholar
  12. 12.
    Goldstein, J., Ramakrishnan, R., Shaft, U., Yu, J.B.: Processing Queries by Linear Constraints. In: Proceedings 16th ACM Symposium on Principles of Database Systems (PODS), Tucson, AZ, pp. 257–267 (1997)Google Scholar
  13. 13.
    Guttman, A.: R-trees: a Dynamic Index Structure for Spatial Searching. In: Proceedings ACM International Conference on Management of Data (SIGMOD), Boston, MA, pp. 47–57 (1984)Google Scholar
  14. 14.
    Jensen Christian, S., Lin, D., Ooi, B.C.: Query and Update Efficient B+-Tree Based Indexing of Moving Objects. In: VLDB 2004, pp. 768–779 (2004)Google Scholar
  15. 15.
    Kaporis, A., Makris, C., Sioutas, S., Tsakalidis, A., Tsichlas, K., Zaroliagis, K.: ISB-Tree: a New Indexing Scheme with Efficient Expected Behaviour. In: Proceedings International Symposium on Algorithms and Computation (ISAAC), Sanya, Hainan, China (2005)Google Scholar
  16. 16.
    Kollios, G., Gunopulos, D., Tsotras, V.: Nearest Neighbor Queries in a Mobile Environment. In: Proceedings 1st Workshop on Spatio-Temporal Database Management (STDBM), Edinburgh, Scotland, pp. 119–134 (1999)Google Scholar
  17. 17.
    Kollios, G., Gunopulos, D., Tsotras, V.: On Indexing Mobile Objects. In: Proceedings 18th ACM Symposium on Principles of Database Systems (PODS), Philadelphia, PA, pp. 261–272 (1999)Google Scholar
  18. 18.
    Kollios, G., Tsotras, V.J., Gunopulos, D., Delis, A., Hadjieleftheriou, M.: Indexing Animated Objects Using Spatiotemporal Access Methods. IEEE Transactions on Knowledge and Data Engineering 13(5), 758–777 (2001)CrossRefGoogle Scholar
  19. 19.
    Levcopoulos, S., Overmars, M.H.: Balanced Search Tree with O(1) Worst-case Update Time. Acta Informatica 26(3), 269–277 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Manolopoulos, Y.: B-trees with Lazy Parent split. Information Sciences 79(1-2), 73–88 (1994)zbMATHCrossRefGoogle Scholar
  21. 21.
    Manolopoulos, Y., Theodoridis, Y., Tsotras, V.: Advanced Database Indexing. Kluwer Academic Publishers, Dordrecht (2000)zbMATHGoogle Scholar
  22. 22.
    Papadopoulos, D., Kollios, G., Gunopulos, D., Tsotras, V.J.: Indexing Mobile Objects on the Plane. In: Hameurlain, A., Cicchetti, R., Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 693–697. Springer, Heidelberg (2002)Google Scholar
  23. 23.
    Patel, J., Chen, Y., Chakka, V.: STRIPES: an Efficient Index for Predicted Trajectories. In: Proceedings ACM International Conference on Management of Data (SIGMOD), Paris, France, pp. 637–646 (2004)Google Scholar
  24. 24.
    Raman, R.: Eliminating Amortization: on Data Structures with Guaranteed Response Time”, Ph.D. Thesis, Technical Report TR-439, Department of Computer Science, University of Rochester, NY (1992)Google Scholar
  25. 25.
    Raptopoulou, K., Vassilakopoulos, M., Manolopoulos, Y.: Towards Quadtree-based Moving Objects Databases. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004. LNCS, vol. 3255, pp. 230–245. Springer, Heidelberg (2004)Google Scholar
  26. 26.
    Raptopoulou, K., Vassilakopoulos, M., Manolopoulos, Y.: Efficient Processing of Past-future Spatiotemporal Queries. In: Proceedings 21st ACM Symposium on Applied Computing (SAC), Minitrack on Advances in Spatial and Image-based Information Systems (ASIIS), Dijon, France, pp. 68–72 (2006)Google Scholar
  27. 27.
    Raptopoulou, K., Vassilakopoulos, M., Manolopoulos, Y.: On Past-time Indexing of Moving Objects. Journal of Systems and Software 79(8), 1079–1091 (2006)CrossRefGoogle Scholar
  28. 28.
    Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.A.: Indexing the Positions of Continuously Moving Objects. In: Proceedings ACM International Conference on Management of Data (SIGMOD), Dallas, TX, pp. 331–342 (2000)Google Scholar
  29. 29.
    Saltenis, S., Jensen, C.S.: Indexing of Moving Objects for Location-Based Services. In: Proceedings 18th IEEE International Conference on Data Engineering (ICDE), San Jose, CA, pp. 463–472 (2002)Google Scholar
  30. 30.
    Salzberg, B., Tsotras, V.J.: A Comparison of Access Methods for Time-Evolving Data. ACM Computing Surveys 31(2), 158–221 (1999)CrossRefGoogle Scholar
  31. 31.
    Samet, H.: The Design and Analysis of Spatial Data Structures. Addison Wesley, Reading (1990)Google Scholar
  32. 32.
    Sellis, T., Roussopoulos, N., Faloutsos, C.: The R + -tree: a Dynamic Index for Multi- Dimensional Objects. In: Proceedings 13th International Conference on Very Large Data Bases (VLDB), Brighton, England, pp. 507–518 (1987)Google Scholar
  33. 33.
    Tao, Y., Papadias, D., Sun, J.: The TPR*-Tree: an Optimized Spatio-Temporal Access Method for Predictive Queries. In: Proceedings 29th. International Conference on Very Large Data Bases (VLDB), Berlin, Germany, pp. 790–801 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Spyros Sioutas
    • 1
  • Konstantinos Tsakalidis
    • 2
  • Kostas Tsihlas
    • 2
  • Christos Makris
    • 2
  • Yannis Manolopoulos
    • 3
  1. 1.Department of Informatics, Ionian University, CorfuGreece
  2. 2.Computer Engineering and Informatics Department, University of PatrasGreece
  3. 3.Department of Informatics, Aristotle University of ThessalonikiGreece

Personalised recommendations