An Agile Process for the Creation of Conceptual Models from Content Descriptions

  • Sebastian Bossung
  • Hans-Werner Sehring
  • Henner Carl
  • Joachim W. Schmidt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4690)

Abstract

It is widely accepted practice to build domain models as a conceptual basis for software systems. Normally, the conceptual schema cannot be supplied by domain experts but is constructed by modelling experts. However, this is infeasible in many cases, e.g., if the system is to be generated ad hoc from a conceptual schema.

This paper presents an iterative process that helps domain experts to create a conceptual schema without the need for a modelling expert. The process starts from a set of sample instances provided by the domain expert in a very simple form. The domain expert is assisted in consolidating the samples such that a coherent schema can be inferred from them. Feedback is given by generating a prototype system which is based on the schema and populated with the provided samples.

The process combines the following three aspects in a novel way: (1) it is based on a large amount of samples supplied by the domain expert, (2) it gives feedback by agile generation of a prototype system, and (3) it does not require a modelling expert nor does it assume modelling knowledge with the domain expert.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abbott, R.J.: Program design by informal english descriptions. Communications of the ACM 26(11), 882–894 (1983)MATHCrossRefGoogle Scholar
  2. 2.
    Ahonen, H., Heinonen, O., Klemettinen, M., Verkamo, A.I.: Applying data mining techniques for descriptive phrase extraction in digital document collections. In: Proceedings of the Advances in Digital Libraries Conference, ADL 1998, pp. 2–11 (1998)Google Scholar
  3. 3.
    Angluin, D., Smith, C.H.: Inductive inference: Theory and methods. ACM Computing Surveys 15(3), 237–269 (1983)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Bossung, S.: Conceptual Content Modeling. PhD thesis, Technische Universität Hamburg-Harburg, 2007 (to be published)Google Scholar
  5. 5.
    Carl, H.: Konzeptuelle Modellierung durch Domänenexperten. Master’s thesis, Technische Universität Hamburg-Harburg (2007)Google Scholar
  6. 6.
    Cherfi, S.S.-S., Akoka, J., Comyn-Wattiau, I.: Conceptual modeling quality - from EER to UML schemas evaluation. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 414–428. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Díaz, I., Moreno, L., Fuentes, I., Pastor, O.: Integrating natural language techniques in OO-method. In: Gelbukh, A. (ed.) CICLing 2005. LNCS, vol. 3406, pp. 560–571. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Fliedl, G., Kop, C., Mayr, H.C.: From textual scenarios to a conceptual schema. Data & Knowledge Engineering 55(1), 20–37 (2004)CrossRefGoogle Scholar
  9. 9.
    Goldman, R., Widom, J.: DataGuides: Enabling query formulation and optimization in semistructured databases. In: Proceedings of 23rd International Conference on Very Large Data Bases, pp. 436–445. Morgan Kaufmann, San Francisco (1997)Google Scholar
  10. 10.
    Gómez-Pérez, A., Fernández-López, M., Corcho, O.: Ontological Engineering. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Hastie, T., Tibshirani, R., Friedman, J.: The elements of Statistical Learning: Data Mining, Inference and Prediction. Springer, Heidelberg (2001)MATHGoogle Scholar
  12. 12.
    Holsapple, C.W., Joshi, K.D.: A collaborative approach to ontology design. Communications of the ACM 45(2), 42–47 (2002)CrossRefGoogle Scholar
  13. 13.
    Larman, C.: Object-oriented Analsyis and Design and Iterative Development, 3rd edn. Prentice-Hall, Englewood Cliffs (2005)Google Scholar
  14. 14.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady, 707–710 (1966)Google Scholar
  15. 15.
    Lindstone, H.A., Furoff, M.: The Delphi Method: Techniques and Applications. Addison-Wesley, Reading (1975)Google Scholar
  16. 16.
    Maiden, N.A.M., Jones, S., Flynn, M.: Innovative requirements engineering applied to ATM. In: Proceedings Air Traffic Management, Budapest (2003)Google Scholar
  17. 17.
    Mayr, H.C., Kop, C.: Conceptual predesign – bridging the gap between requirements and conceptual design. In: Proceedings of 3rd Int. Conference on Requirements Engineering, pp. 90–100. IEEE Computer Society, Los Alamitos (1998)Google Scholar
  18. 18.
    Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual models: current state and future directions. Data & Knowledge Engineering 55(3), 243–276 (2005)CrossRefGoogle Scholar
  19. 19.
    Norrie, M.C.: Distinguishing typing and classification in object data models. In: Information Modelling and Knowledge Bases, vol. VI, IOS (1995)Google Scholar
  20. 20.
    Palsberg, J., Schwartzbach, M.I.: Object-oriented type inference. In: Proceedings of the Conference on Object-Oriented Programming, Systems, Languages & Applications, pp. 146–161 (1991)Google Scholar
  21. 21.
    Proper, H.A.E.: Data schema design as a schema evolution process. Data Knowledge Engineering 22(2), 159–189 (1997)MATHCrossRefGoogle Scholar
  22. 22.
    Puerta, A., Micheletti, M., Mak, A.: The UI pilot: A model-based tool to guide early interface design. In: Proceedings of the 10th international conference on Intelligent user interfaces, pp. 215–222. ACM Press, New York (2005)CrossRefGoogle Scholar
  23. 23.
    Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal 10(4), 334–350 (2001)MATHCrossRefGoogle Scholar
  24. 24.
    Rechenberg, P., Pomberger, G. (eds.): Informatik Handbuch, 4th edn. Hanser(2006)Google Scholar
  25. 25.
    Rupp, C.: Requirements-Engineering und -Management: Professionelle, iterative Anforderungsanalyse für die Praxis, 3rd edn. Carl Hanser Verlag (2004)Google Scholar
  26. 26.
    Schmidt, J.W., Sehring, H.-W.: Conceptual Content Modeling and Management: The Rationale of an Asset Language. In: Broy, M., Zamulin, A.V. (eds.) PSI 2003. LNCS, vol. 2890, pp. 469–493. Springer, Heidelberg (2004)Google Scholar
  27. 27.
    Sehring, H.-W., Bossung, S., Schmidt, J.W.: Content is capricious: A case for dynamic systems generation. In: Manolopoulos, Y., Pokorný, J., Sellis, T. (eds.) ADBIS 2006. LNCS, vol. 4152, pp. 430–445. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Sehring, H.-W., Schmidt, J.W.: Beyond Databases: An Asset Language for Conceptual Content Management. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004. LNCS, vol. 3255, pp. 99–112. Springer, Heidelberg (2004)Google Scholar
  29. 29.
    Shipman III, F.M., Marshall, C.C.: Formality considered harmful: Experiences, emerging themes, and directions on the use of formal representations in interactive systems. Computer Supported Cooperative Work 8(4), 333–352 (1999)CrossRefGoogle Scholar
  30. 30.
    Sowa, J.: Knowledge Representation. Brooks/Cole (2000)Google Scholar
  31. 31.
    Staab, S., Studer, R., Schnurr, H.-P., Sure, Y.: Knowledge processes and ontologies. IEEE Intelligent Systems 16(1), 26–34 (2001)CrossRefGoogle Scholar
  32. 32.
    Storey, V.C., Goldstein, R.C., Ullrich, H.: Naive semantics to support automated database design. IEEE Transactions on Knowledge and Data Engineering 14(1), 1–12 (2002)CrossRefGoogle Scholar
  33. 33.
    Tam, R.C.-M., Maulsby, D., Puerta, A.R.: U-TEL: A tool for eliciting user task models from domain experts. In: Proc. of the 3rd Int. Conference on Intelligent User Interfaces, pp. 77–80. ACM Press, New York (1998)Google Scholar
  34. 34.
    Wong, R.K.: Sankey, J.: On structural inference for XML data. Technical report, University of New South Wales (June 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Sebastian Bossung
    • 1
  • Hans-Werner Sehring
    • 2
  • Henner Carl
    • 1
  • Joachim W. Schmidt
    • 2
  1. 1.Hamburg University of TechnologyGermany
  2. 2.Sustainable Content Logistics Centre, HamburgGermany

Personalised recommendations