What Makes Process Models Understandable?

  • Jan Mendling
  • Hajo A. Reijers
  • Jorge Cardoso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4714)


Despite that formal and informal quality aspects are of significant importance to business process modeling, there is only little empirical work reported on process model quality and its impact factors. In this paper we investigate understandability as a proxy for quality of process models and focus on its relations with personal and model characteristics. We used a questionnaire in classes at three European universities and generated several novel hypotheses from an exploratory data analysis. Furthermore, we interviewed practitioners to validate our findings. The results reveal that participants tend to exaggerate the differences in model understandability, that self-assessment of modeling competence appears to be invalid, and that the number of arcs in models has an important influence on understandability.


Quality Aspect Quality Framework Connector Degree Process Modeling Language Pragmatic Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hoppenbrouwers, S., Proper, H., van der Weide, T.: A Fundamental View on the Process of Conceptual Modeling. In: Delcambre, L.M.L., Kop, C., Mayr, H.C., Mylopoulos, J., Pastor, Ó. (eds.) ER 2005. LNCS, vol. 3716, pp. 128–143. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Becker, J., Rosemann, M., Uthmann, C.: Guidelines of Business Process Modeling. In: van der Aalst, W., Desel, J., Oberweis, A. (eds.) Business Process Management. Models, Techniques, and Empirical Studies, pp. 30–49. Springer, Berlin (2000)Google Scholar
  3. 3.
    Moody, D.: Theoretical and practical issues in evaluating the quality of conceptual models: current state and future directions. Data & Knowledge Engineering 55, 243–276 (2005)CrossRefGoogle Scholar
  4. 4.
    Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do practitioners use conceptual modeling in practice? Data & Knowledge Engineering 58, 358–380 (2006)CrossRefGoogle Scholar
  5. 5.
    Mendling, J., Moser, M., Neumann, G., Verbeek, H., Dongen, B., Aalst, W.: Faulty EPCs in the SAP Reference Model. In: Dustdar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, pp. 451–457. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Mendling, J., Moser, M., Neumann, G., Verbeek, H., Dongen, B., Aalst, W.: A Quantitative Analysis of Faulty EPCs in the SAP Reference Model. BPM Center Report BPM-06-08, (2006)Google Scholar
  7. 7.
    Simon, H.: Sciences of the Artificial, 3rd edn. MIT Press, Cambridge (1996)Google Scholar
  8. 8.
    Mendling, J.: Detection and Prediction of Errors in EPC Business Process Models. PhD thesis, Vienna University of Economics and Business Administration (2007)Google Scholar
  9. 9.
    Lindland, O.I., Sindre, G., Sølvberg, A.: Understanding quality in conceptual modeling. IEEE Software 11(2), 42–49 (1994)CrossRefGoogle Scholar
  10. 10.
    Krogstie, J., Sindre, G., Jørgensen, H.D.: Process models representing knowledge for action: a revised quality framework. European Journal of Information Systems 15, 91–102 (2006)CrossRefGoogle Scholar
  11. 11.
    Moody, D., Sindre, G., Brasethvik, T., Sølvberg, A.: Evaluating the quality of process models: Empirical testing of a quality framework. In: Spaccapietra, S., March, S.T., Kambayashi, Y. (eds.) ER 2002. LNCS, vol. 2503, pp. 380–396. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Int. Standards Org (ISO): Information technology - software product evaluation - quality characteristics and guide lines for their use. ISO/IEC IS 9126 (1991)Google Scholar
  13. 13.
    Güceglioglu, A.S., Demirörs, O.: Using software quality characteristics to measure business process quality. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 374–379. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Gemino, A., Wand, Y.: Evaluating modeling techniques based on models of learning. Commun. ACM 46, 79–84 (2003)CrossRefGoogle Scholar
  15. 15.
    Lee, G., Yoon, J.M.: An empirical study on the complexity metrics of petri nets. Microelectronics and Reliability 32, 323–329 (1992)CrossRefGoogle Scholar
  16. 16.
    Nissen, M.E.: Redesigning reengineering through measurement-driven inference. MIS Quarterly 22, 509–534 (1998)CrossRefGoogle Scholar
  17. 17.
    Morasca, S.: Measuring attributes of concurrent software specifications in petri nets. In: METRICS 1999. Proceedings of the 6th International Symposium on Software Metrics, Washington, DC, USA, pp. 100–110. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  18. 18.
    Reijers, H., Vanderfeesten, I.: Cohesion and coupling metrics for workflow process design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 290–305. Springer, Heidelberg (2004)Google Scholar
  19. 19.
    Cardoso, J.: Evaluating Workflows and Web Process Complexity. In: Workflow Handbook, Future Strategies, Inc., Lighthouse Point, USA, pp. 284–290 (2005)Google Scholar
  20. 20.
    Balasubramanian, S., Gupta, M.: Structural metrics for goal based business process design and evaluation. Business Process Management Journal 11, 680–694 (2005)CrossRefGoogle Scholar
  21. 21.
    Canfora, G., García, F., Piattini, M., Ruiz, F., Visaggio, C.: A family of experiments to validate metrics for software process models. Journal of Systems and Software 77, 113–129 (2005)CrossRefGoogle Scholar
  22. 22.
    Aguilar, E.R., Ruiz, F., García, F., Piattini, M.: Towards a Suite of Metrics for Business Process Models in BPMN. In: Manolopoulos, Y., Filipe, J., Constantopoulos, P., Cordeiro, J. (eds.) ICEIS 2006 - Proceedings of the Eighth International Conference on Enterprise Information Systems (III), pp. 440–443 (2006)Google Scholar
  23. 23.
    Laue, R., Gruhn, V.: Complexity metrics for business process models. In: Abramowicz, W., Mayr, H.C. (eds.) 9th International Conference on Business Information Systems (BIS 2006). Lecture Notes in Informatics, vol. 85, pp. 1–12 (2006)Google Scholar
  24. 24.
    Cardoso, J.: Process control-flow complexity metric: An empirical validation. In: IEEE SCC 2006. Proceedings of IEEE International Conference on Services Computing, Chicago, USA, September 18-22, pp. 167–173. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  25. 25.
    Rosemann, M., Recker, J., Indulska, M., Green, P.: A study of the evolution of the representational capabilities of process modeling grammars. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 447–461. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Agarwal, R., Sinha, A.P.: Object-oriented modeling with uml: a study of developers’ perceptions. Commun. ACM 46, 248–256 (2003)CrossRefGoogle Scholar
  27. 27.
    Sarshar, K., Loos, P.: Comparing the control-flow of epc and petri net from the end-user perspective. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 434–439. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Lange, C., Chaudron, M.: Effects of defects in uml models: an experimental investigation. In: Osterweil, L.J., Rombach, H.D., Soffa, M.L. (eds.) ICSE 2006. 28th International Conference on Software Engineering, Shanghai, China, May 20-28, 2006, pp. 401–411. ACM Press, New York (2006)CrossRefGoogle Scholar
  29. 29.
    Mendling, J., Aalst, W.: Towards EPC Semantics based on State and Context. In: Nüttgens, M., Rump, F.J., Mendling, J. (eds.) Proceedings of the 5th GI Workshop on Business Process Management with Event-Driven Process Chains (EPK, Vienna, Austria, German Informatics Society, pp.25–48 (2006)Google Scholar
  30. 30.
    Mendling, J., Aalst, W.: Formalization and Verification of EPCs with OR-Joins Based on State and Context. In: Krogstie, J., Opdahl, A.L., Sindre, G. (eds.) CAiSE 2007. LNCS, vol. 4495, Springer, Heidelberg (2007)Google Scholar
  31. 31.
    Siegel, S., Castellan, N.J.: Nonparametric Statistics for the Behavorial Sciences, 2nd edn. McGraw-Hill, New York (1988)Google Scholar
  32. 32.
    Kendall, M.G.: Rank Correlation Methods, 4th edn. Griffin, London (1970)zbMATHGoogle Scholar
  33. 33.
    Aalst, W.: Workflow Verification: Finding Control-Flow Errors Using Petri-Net-Based Techniques. In: van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. LNCS, vol. 1806, pp. 161–183. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Jan Mendling
    • 1
  • Hajo A. Reijers
    • 2
  • Jorge Cardoso
    • 3
  1. 1.Vienna University of Economics and Business Administration, Augasse 2-6, 1090 ViennaAustria
  2. 2.Eindhoven University of Technology, P.O. Box 513, 5600 MB EindhovenThe Netherlands
  3. 3.University of Madeira, 9000-390 FunchalPortugal

Personalised recommendations