Advertisement

Inducing Declarative Logic-Based Models from Labeled Traces

  • Evelina Lamma
  • Paola Mello
  • Marco Montali
  • Fabrizio Riguzzi
  • Sergio Storari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4714)

Abstract

In this work we propose an approach for the automatic discovery of logic-based models starting from a set of process execution traces. The approach is based on a modified Inductive Logic Programming algorithm, capable of learning a set of declarative rules.

The advantage of using a declarative description is twofold. First, the process is represented in an intuitive and easily readable way; second, a family of proof procedures associated to the chosen language can be used to support the monitoring and management of processes (conformance testing, properties verification and interoperability checking, in particular).

The approach consists in first learning integrity constraints expressed as logical formulas and then translating them into a declarative graphical language named DecSerFlow.

We demonstrate the viability of the approach by applying it to a real dataset from a health case process and to an artificial dataset from an e-commerce protocol.

Topics

Process mining Process verification and validation Logic Programming DecSerFlow Careflow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  2. 2.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Montali, M., Storari, S., Torroni, P.: Computational logic for run-time verification of web services choreographies: Exploiting the ocs-si tool. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 58–72. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: the SCIFF framework. ACM Transactions on Computational Logics (accepted for publication, 2007)Google Scholar
  4. 4.
    Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An abductive interpretation for open societies. In: Cappelli, A., Turini, F. (eds.) AI*IA 2003. LNCS, vol. 2829, Springer, Heidelberg (2003)Google Scholar
  5. 5.
  6. 6.
    Chesani, F., Mello, P., Montali, M., Storari, S.: Towards a decserflow declarative semantics based on computational logic. Technical Report DEIS-LIA-07-002, DEIS, Bologna, Italy (2007)Google Scholar
  7. 7.
    Clark, K.L.: Negation as failure. In: Logic and Databases, Plenum Press, New York (1978)Google Scholar
  8. 8.
    De Raedt, L., Van Laer, W.: Inductive constraint logic. In: Zeugmann, T., Shinohara, T., Jantke, K.P. (eds.) ALT 1995. LNCS, vol. 997, Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Greco, G., Guzzo, A., Pontieri, L., Saccá, D.: Discovering expressive process models by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)CrossRefGoogle Scholar
  10. 10.
  11. 11.
    Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to process mining. In: ILP 2007, Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Muggleton, S., De Raedt, L.: Inductive logic programming: Theory and methods. Journal of Logic Programming 19/20, 629–679 (1994)CrossRefGoogle Scholar
  13. 13.
    SCIFF specification of the netbill protocol, available at: http://edu59.deis.unibo.it:8079/SOCSProtocolsRepository/jsp/protocol.jsp?id=8
  14. 14.
    Prom framework, available at: http://is.tm.tue.nl/~cgunther/dev/prom/
  15. 15.
    Rouached, M., Perrin, O., Godart, C.: Towards formal verification of web service composition. In: Dustdar, S., Fiadeiro, J.L., Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, pp. 257–273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    van der Aalst, W.M.P., Pesic, M.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) Business Process Management Workshops. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data Knowl. Eng. 47(2), 237–267 (2003)CrossRefGoogle Scholar
  19. 19.
    van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  20. 20.
    van Dongen, B.F., van der Aalst, W.M.P.: Multi-phase process mining: Building instance graphs. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 362–376. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Evelina Lamma
    • 1
  • Paola Mello
    • 2
  • Marco Montali
    • 2
  • Fabrizio Riguzzi
    • 1
  • Sergio Storari
    • 1
  1. 1.ENDIF – Università di Ferrara, Via Saragat, 1 – 44100 – FerraraItaly
  2. 2.DEIS – Università di Bologna, viale Risorgimento, 2 – 40136 – BolognaItaly

Personalised recommendations