Towards Trajectory Data Warehouses

  • N. Pelekis
  • A. Raffaetà
  • M. -L. Damiani
  • C. Vangenot
  • G. Marketos
  • E. Frentzos
  • I. Ntoutsi
  • Y. Theodoridis

Data warehouses have received the attention of the database community as a technology for integrating all sorts of transactional data, dispersed within organisations whose applications utilise either legacy (non-relational) or advanced relational database systems. Data warehouses form a technological framework for supporting decision-making processes by providing informational data. A data warehouse is defined as a subject-oriented, integrated, time-variant, non-volatile collection of data in support of management of decision-making process [10].


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Agarwal, R. Agrawal, P. Deshpande, A. Gupta, J. Naughton, R. Ramakrishnan, and S. Sarawagi. On the computation of multidimensional aggregates. In Proceeding on 22th International Conference on Very Large Data Bases (VLDB’96), pp. 506–521, 1996.Google Scholar
  2. 2.
    Y. Bédard, T. Merrett, and J. Han. Fundamentals of spatial data warehousing for geographic knowledge discovery. In Geographic Data Mining and Knowledge Discovery, pp. 53–73. Taylor & Francis, 2001.Google Scholar
  3. 3.
    S. Bimonte, A. Tchounikine, and M. Miquel. Towards a spatial multi-dimensional model. In Proceedings of ACM 8th International Workshop on Data Warehousing and OLAP (DOLAP’05), pp. 39–46, 2005.Google Scholar
  4. 4.
    F. Braz, S. Orlando, R. Orsini, A. Raffaetà, A. Roncato, and C. Silvestri. Approximate aggregations in trajectory data warehouses. In Proceedings of ICDE Workshop on Spatio-Temporal Data Mining, pp. 536–545, 2007.Google Scholar
  5. 5.
    M.-L. Damiani and S. Spaccapietra. Spatial data warehouse modelling. In Processing and Managing Complex Data for Decision Support, pp. 12–27. Idea Group Publishing, 2006.Google Scholar
  6. 6.
    P. Flajolet and G. Martin. Probabilistic counting algorithms for data base applications. Journal of Computer and System Sciences, 31(2):182–209, 1985.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-total. In Proceedings of the 12th International Conference on Data Engineering (ICDE’96), pp. 152–159, 1996.Google Scholar
  8. 8.
    J. Han, N. Stefanovic, and K. Kopersky. Selective materialization: An efficient method for spatial data cube construction. In Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 144–158, 1998.Google Scholar
  9. 9.
    K. Hornsby and M. Egenhofer. Modeling moving objects over multiple granularities. Annals of Mathematics and Artificial Intelligence, 36(1–2):177–194, 2002.MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    W. Inmon. Building the Data Warehouse, 2nd edn. Wiley, 1996.Google Scholar
  11. 11.
    C. Jensen, A. Kligys, T. Pedersen, C. Dyreson, and I. Timko. Multidimensional data modeling for location-based services. The Very Large Data Bases Journal, 13:1–21, 2004.CrossRefGoogle Scholar
  12. 12.
    I. Lopez, R. Snodgrass, and B. Moon. Spatiotemporal aggregate computation: A survey. IEEE Transactions o Knowledge Data Engeneering, 2(17):271–286, 2005.CrossRefGoogle Scholar
  13. 13.
    E. Malinowski and E. Zimányi. OLAP hierarchies: A conceptual perspective. In Proceedings of the 16th International Conference on Advanced Information Systems Engineering (CAiSE’04), pp. 477–491, 2004.Google Scholar
  14. 14.
    E. Malinowski and E. Zimányi. Representing spatiality in a conceptual multidimensional model. In Proceedings of the 12th annual International Workshop on Geographic Information Systems (GIS’04), pp. 12–21, 2004.Google Scholar
  15. 15.
    E. Malinowski and E. Zimányi. Hierarchies in a multidimensional model: From conceptual modeling to logical representation. Data and Knowledge Engineering, 59(2):348–377, 2006.CrossRefGoogle Scholar
  16. 16.
    OpenGIS Consortium. Abstract Specification, Topic 1: Feature Geometry (ISO 19107 Spatial Schema), 2001.
  17. 17.
    D. Papadias, Y. Tao, P. Kalnis, and J. Zhang. Indexing spatio-temporal data warehouses. In Proceedings of the 18th International Conference on Data Engineering (ICDE’02), pp. 166–175, 2002.Google Scholar
  18. 18.
    T. Pedersen and N. Tryfona. Pre-aggregation in spatial data warehouses. In Proceedings of the 5th International Symposium on Spatial and Temporal Databases (SSTD’01), vol. 2121 of LNCS, pp. 460–480, 2001.Google Scholar
  19. 19.
    F. Rao, L. Zhang, X. Yu, Y. Li, and Y. Chen. Spatial hierarchy and OLAP-favored search in spatial data warehouse. In Proceedings of ACM 6th International Workshop on Data Warehousing and OLAP (DOLAP’03), pp. 48–55, 2003.Google Scholar
  20. 20.
    S. Rivest, Y. Bédard, and P. Marchand. Towards better support for spatial decision making: Defining the characteristics of spatial on-line analytical processing (SOLAP). Geomatica, 55(4):539–555, 2001.Google Scholar
  21. 21.
    S. Rivest, Y. Bédard, M. Proulx, M. Nadeau, F. Hubert, and J. Pastor. SOLAP: Merging business intelligence with geospatial technology for interactive spatio-temporal exploration and analysis of data. Journal of International Society for Photogrammetry & Remote Sensing, 60(1):17–33, 2005.CrossRefGoogle Scholar
  22. 22.
    S. Rizzi. Open problems in data warehousing: Eight years later. In Proceedings of the 5th Workshop on Design and Management of Data Warehouses (DMDW’03), 2003.Google Scholar
  23. 23.
    S. Rizzi and M. Golfarelli. Date warehouse design. In Proceedings of International Conference on Enterprise Information Systems (ICEIS’00), pp. 39–42, 2000.Google Scholar
  24. 24.
    S. Shekhar, C. Lu, S. Chawla, and P. Zhang. Data mining and visualization of twin-cities traffic data. Technical Report, University of Minnesota, 2002.Google Scholar
  25. 25.
    N. Stefanovic, J. Han, and K. Koperski. Object-based selective materialization for efficient implementation of spatial data cubes. IEEE Transactions on Knowledge and Data Engineering, 12(6):938–958, 2000.CrossRefGoogle Scholar
  26. 26.
    Y. Tao, G. Kollios, J. Considine, F. Li, and D. Papadias. Spatio-temporal aggregation using sketches. In Proceedings of the 20th International Conference on Data Engineering (ICDE’04), pp. 214–225, 2004.Google Scholar
  27. 27.
    Y. Tao and D. Papadias. Historical spatio-temporal aggregation. ACM Transactions on Information Systems, 23:61–102, 2005.CrossRefGoogle Scholar
  28. 28.
    G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. Managing uncertainty in moving objects databases. ACM Transactions on Database System, 29(3):463–507, 2004.CrossRefGoogle Scholar
  29. 29.
    G. Trajcevski, O. Wolfson, F. Zhang, and S. Chamberlain. The geometry of uncertainty in moving objects databases. In Proceedings of 7th International Conference on Extending Database Technology (EDBT’02), pp. 233–250, 2002.Google Scholar
  30. 30.
    J. Trujillo, M. Palomar, J. Gómez, and I. Song. Designing data warehouses with OO conceptual models. IEEE Computer, Special Issue on Data Warehouses, 34(12):66–75, 2001.Google Scholar
  31. 31.
    P. Vassiliadis and T. Sellis. A survey of logical models for OLAP databases. SIGMOD Record, 28(4):64–69, 1999.CrossRefGoogle Scholar
  32. 32.
    D. Zhang and V. Tsotras. Optimizing spatial Min/Max aggregations. The Very Large Data Bases Journal, 14:170–181, 2005.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • N. Pelekis
    • 1
  • A. Raffaetà
    • 2
  • M. -L. Damiani
    • 3
  • C. Vangenot
    • 4
  • G. Marketos
    • 1
  • E. Frentzos
    • 1
  • I. Ntoutsi
    • 1
  • Y. Theodoridis
    • 1
  1. 1.Computer Technology Institute (CTI) and Department of InformaticsUniversity of PiraeusGreece
  2. 2.Dipartimento di InformaticaUniversità Ca℉ Foscari di VeneziaItaly
  3. 3.Dipartimento di Informatica e ComunicazioneUniversità di MilanoItaly
  4. 4.Database LaboratoryÉcole Polytechnique Fédérale de LausanneSwitzerland

Personalised recommendations