Advertisement

Spatiotemporal Data Mining

  • M. Nanni
  • B. Kuijpers
  • C. Körner
  • M. May
  • D. Pedreschi

After the introduction and development of the relational database model between 1970 and the 1980s, this model proved to be insufficiently expressive for specific applications dealing with, for instance, temporal data, spatial data and multi-media data. From the mid-1980s, this has led to the development of domain-specific database systems, the first being temporal databases, later followed by spatial database systems.

Keywords

Data Mining Association Rule Knowledge Discovery Frequent Pattern Pattern Mining 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Abraham. Knowledge Discovery in Spatio-Temporal Databases. Ph.D. Thesis, School of Computer and Information Science, Faculty of Information Technology, University of South Australia, 1999.Google Scholar
  2. 2.
    R. Agrawal, K.-I. Lin, H.S. Sawhney, and K. Shim. Fast similarity search in the presence of noise, scaling, and translation in time-series databases. In Proceedings of 21st International Conference on Very Large Data Bases (VLDB’95), pp. 490–501. Morgan Kaufmann, Los Altos, CA, 1995.Google Scholar
  3. 3.
    J. Alon, S. Sclaroff, G. Kollios, and V. Pavlovic. Discovering clusters in motion time-series data. In Proceedings of the 2003 Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’03), pp. 375–381. IEEE, Los Alamitos, CA, 2003.CrossRefGoogle Scholar
  4. 4.
    R. Benetis, C.S. Jensen, G. Karciauskas, and S. Saltenis. Nearest and reverse nearest neighbor queries for moving objects. The Very Large Databases Journal, 15(3):229–249, 2006.CrossRefGoogle Scholar
  5. 5.
    D. Berndt and J. Clifford. Using dynamic time warping to find patterns in time series. In Proceedings of Knowledge Discovery and Delivery Workshop, pp. 359–370, 1994.Google Scholar
  6. 6.
    J. Biesterfeld, E. Ennigrou, and K. Jobmann. Neural networks for location prediction in mobile networks. In Proceedings of the International Workshop on Applications of Neural Networks to Telecommunications (IWANNT’97), pp. 207–214, 1997.Google Scholar
  7. 7.
    T. Bozkaya, N. Yazdani, and Z.M. Özsoyoglu. Matching and indexing sequences of different lengths. In Proceedings of the 6th International Conference on Information and Knowledge Management (CIKM’97), pp. 128–135, 1997.Google Scholar
  8. 8.
    D.E. Brown, H. Liu, and Y. Xue. Mining preferences from spatial-temporal data. In Proceedings of the 1st International Conference on Data Mining (SDM’01), 2001.Google Scholar
  9. 9.
    H. Cao, N. Mamoulis, and D.W. Cheung. Mining frequent spatio-temporal sequential patterns. In Proceedings of the 5th International Conference on Data Mining (ICDM’05), pp. 82–89. IEEE, New Orleans, LA, 2005.Google Scholar
  10. 10.
    H. Cao, N. Mamoulis, and D.W. Cheung. Discovery of collocation episodes in spatiotemporal data. In Proceedings of the 6th International Conference on Data Mining (ICDM’06), pp. 823–827. IEEE, Hong Kong, China, 2006.CrossRefGoogle Scholar
  11. 11.
    M. Chau, R. Cheng, B. Kao, and J. Ng. Uncertain data mining: An example in clustering location data. In Proceedings of the 10th Pacific–Asia Conference on Knowledge Discovery and Data Mining (PAKDD’06), pp. 199–204. Springer, Berlin Heidelberg New York, 2006.Google Scholar
  12. 12.
    C. Cheng, R. Jain, and E. van den Berg. Location prediction algorithms for mobile wireless systems. In B. Furht and M. Ilyas, editors, Wireless Internet Handbook: Technologies, Standards, and Applications, pp. 245–263. CRC, Boca Raton, 2003.Google Scholar
  13. 13.
    R. Cheng, D.V. Kalashnikov, and S. Prabhakar. Querying imprecise data in moving object environments. IEEE Transactions on Knowledge and Data Engineering, 16(9):1112–1127, 2004.CrossRefGoogle Scholar
  14. 14.
    J.-P. Chilès and P. Delfiner. Geostatistics – Modeling Spatial Uncertainty. Wiley, London, 1999.zbMATHGoogle Scholar
  15. 15.
    D. Chudova, S. Gaffney, E. Mjolsness, and P. Smyth. Translation-invariant mixture models for curve clustering. In Proceedings of the 9th International Conference on Knowledge Discovery and Data Mining (KDD’03), pp. 79–88. ACM, New York, 2003.Google Scholar
  16. 16.
    G. Das, K.-I. Lin, H. Mannila, G. Renganathan, and P. Smyth. Rule discovery from time series. In Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD’98), pp. 16–22. AAAI, New York, 1998.Google Scholar
  17. 17.
    M. Ester, H.-P. Kriegel, and J. Sanders. Algorithms and applications for spatial data mining. In H.J. Miller and J. Han, editors, Geographic Data Mining and Knowledge Discovery, pp. 160–187. Taylor & Francis, London, 2001.Google Scholar
  18. 18.
    Fraunhofer Institut Intelligente Analyse- und Informationssysteme (IAIS). http://www.iais.fraunhofer.de, 2007.
  19. 19.
    S. Gaffney and P. Smyth. Trajectory clustering with mixture of regression models. In Proceedings of the 5th International Conference on Knowledge Discovery and Data Mining (KDD’99), pp. 63–72. ACM, New York, 1999.Google Scholar
  20. 20.
    P. Geurts. Pattern extraction for time series classification. In Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD’01), pp. 115–127. Springer, Berlin Heidelberg New York, 2001.CrossRefGoogle Scholar
  21. 21.
    F. Giannotti, M. Nanni, and D. Pedreschi. Efficient mining of temporally annotated sequences. In Proceedings of the 6th International Conference on Data Mining (SDM’06), pp. 346–357. SIAM, Bethesda, MD, 2006.Google Scholar
  22. 22.
    F. Giannotti, M. Nanni, D. Pedreschi, and F. Pinelli. Trajectory pattern mining. In Proceedings of the 13th International Conference on Knowledge Discovery and Data Mining (KDD’07). ACM, New York, 2007.Google Scholar
  23. 23.
    J. Gudmundsson, M.J. van Kreveld, and B. Speckmann. Efficient detection of motion patterns in spatio-temporal data sets. In Proceedings of the 12th International Workshop on Geographic Information Systems (GIS’04), pp. 250–257. ACM, New York, 2004.Google Scholar
  24. 24.
    M. Hadjieleftheriou, G. Kollios, P. Bakalov, and V.J. Tsotras. Complex spatio-temporal pattern queries. In Proceedings of the 31st International Conference on Very Large Data Bases (VLDB’05), pp. 877–888. ACM, New York, 2005.Google Scholar
  25. 25.
    M. Hadjieleftheriou, G. Kollios, D. Gunopulos, and V.J. Tsotras. On-line discovery of dense areas in spatio-temporal databases. In Proceedings of the 8th International Symposium on Advances in Spatial and Temporal Databases (SSTD’03), pp. 306–324. Springer, Berlin Heidelberg New York, 2003.Google Scholar
  26. 26.
    S.-Y. Hwang, Y.-H. Liu, J.-K. Chiu, and E.-P. Lim. Mining mobile group patterns: A trajectory-based approach. In Proceedings of the 9th Pacific–Asia Conference on Knowledge Discovery and Data Mining (PAKDD’05), pp. 713–718. Springer, Berlin Heidelberg New York, 2005.Google Scholar
  27. 27.
    V.S. Iyengar. On detecting space–time clusters. In Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining (KDD’04), pp. 587–592. ACM, New York, 2004.CrossRefGoogle Scholar
  28. 28.
    P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in spatio-temporal data. In Proceedings of 9th International Symposium on Spatial and Temporal Databases (SSTD’05), pp. 364–381. Springer, Berlin Heidelberg New York, 2005.Google Scholar
  29. 29.
    H.A. Karimi and X. Liu. A predictive location model for location-based services. In Proceedings of the 11th International Symposium on Geographic Information Systems (GIS’03), pp. 126–133. ACM, New York, 2003.Google Scholar
  30. 30.
    D. Katsaros, A. Nanopoulos, M. Karakaya, G. Yavas, O. Ulusoy, and Y. Manolopoulos. Clustering mobile trajectories for resource allocation in mobile environments. In Proceedings of the 5th International Symposium on Intelligent Data Analysis (IDA’03), pp. 319–329. Springer, Berlin Heidelberg New York, 2003.Google Scholar
  31. 31.
    E. Keogh and M. Pazzani. An enhanced representation of time series which allows fast and accurate classification, clustering and relevance feedback. In Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD’98), pp. 239–241. ACM, New York, 1998.Google Scholar
  32. 32.
    A. Ketterlin. Clustering sequences of complex objects. In Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD’97), pp. 215–218. AAAI, New York, 1997.Google Scholar
  33. 33.
    K. Koperski and J. Han. Discovery of spatial association rules in geographic information databases. In Proceedings of the 4th International Symposium on Advances in Spatial Databases (SSD’95), pp. 47–66. Springer, Berlin Heidelberg New York, 1995.Google Scholar
  34. 34.
    K. Koperski, J. Han, and N. Stefanovic. An efficient two-step method for classification of spatial data. In Proceedings of the 8th International Symposium on Spatial Data Handling (SDH’98), pp. 45–55, 1998.Google Scholar
  35. 35.
    A.P. Kragh, B. Ornulf, G.D. Richard, and K. Niels. Statistical Models Based on Counting Processes. Springer Series in Statistics. Springer, Berlin Heidelberg New York, 1993.zbMATHGoogle Scholar
  36. 36.
    M. Kulldorff. A spatial scan statistic. Communications in Statistics: Theory and Methods, 26(6):1481–1496, 1997.zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    K. Laasonen. Clustering and prediction of mobile user routes from cellular data. In Proceeding of 9th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD’05), pp. 569–576. Springer, Berlin Heidelberg New York, 2005.Google Scholar
  38. 38.
    P. Laube and S. Imfeld. Analyzing relative motion within groups of trackable moving point objects. In Proceedings of 2nd International Conference on Geographic Information Science (GIS’02), pp. 132–144. Springer, Berlin Heidelberg New York, 2002.Google Scholar
  39. 39.
    P. Laube, M. van Kreveld, and S. Imfeld. Finding REMO – Detecting relative motion patterns in geospatial lifelines. In Proceedings of 11th International Symposium on Spatial Data Handling (SDH’04), pp. 201–214. Springer, Berlin Heidelberg New York, 2004.Google Scholar
  40. 40.
    J.-G. Lee, J. Han, and K.-Y. Whang. Trajectory clustering: A partition-and-group framework. In Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data (SIGMOD’07), pp. 593–604. ACM, New York, 2007.CrossRefGoogle Scholar
  41. 41.
    Y. Li, J. Han, and J. Yang. Clustering moving objects. In Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining (KDD’04), pp. 617–622. ACM, New York, 2004.CrossRefGoogle Scholar
  42. 42.
    Z. Li, M.H. Dunham, and Y. Xiao. STIFF: A forecasting framework for spatio-temporal data. In Mining Multimedia and Complex Data, pp. 183–198. Springer, Berlin Heidelberg New York, 2002.Google Scholar
  43. 43.
    Z. Li, L. Liu, and M.H. Dunham. Considering correlation between variables to improve spatiotemporal forecasting. In Proceedings of the 7th Pacific–Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD’03), pp. 519–531. Springer, Berlin Heidelberg New York, 2003.CrossRefGoogle Scholar
  44. 44.
    B. Liang and Z.J. Haas. Predictive distance-based mobility management for multidimensional PCS networks. IEEE/ACM Transactions on Networking, 11(5):718–732, 2003.CrossRefGoogle Scholar
  45. 45.
    S.C. Liou and Y.M. Huang. Trajectory predictions in mobile networks. International Journal of Information Technology, 11(11):109–122, 2005.Google Scholar
  46. 46.
    S. Ma, S. Tang, D. Yang, T. Wang, and J. Han. Combining clustering with moving sequential pattern mining: A novel and efficient technique. In Proceedings of the 8th Pacific–Asia Conference on Knowledge Discovery and Data Mining (PAKDD’04), pp. 419–423. Springer, Berlin Heidelberg New York, 2004.Google Scholar
  47. 47.
    N. Mamoulis, H. Cao, G. Kollios, M. Hadjieleftheriou, Y. Tao, and D. Cheung. Mining, indexing, and querying historical spatiotemporal data. In Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining (KDD’04), pp. 236–245. ACM, New York, 2004.CrossRefGoogle Scholar
  48. 48.
    M. Nanni. Clustering Methods for Spatio-Temporal Data. Ph.D. Thesis, Computer Science Department, University of Pisa, 2002.Google Scholar
  49. 49.
    M. Nanni and D. Pedreschi. Time-focused density-based clustering of trajectories of moving objects. Journal of Intelligent Information Systems, 27(3):267–289, 2006.CrossRefGoogle Scholar
  50. 50.
    G. Paaß and J. Kindermann. Current approaches to spatial statistics and Bayesian extensions. Technical Report, GMD – Forschungszentrum Informationstechnik, 2000.Google Scholar
  51. 51.
    C. Perng, H. Wang, S. Zhang, and S. Parker. Landmarks: A new model for similarity-based pattern querying in time series databases. In Proceedings of the 16th International Conference on Data Engineering (ICDE’00), pp. 33–42. IEEE, San Diego, CA, 2000.Google Scholar
  52. 52.
    D. Pfoser and C.S. Jensen. Capturing the uncertainty of moving-object representations. In Proceedings of the 6th International Symposium on Advances in Spatial Databases (SSD’99), pp. 111–132. Springer, Berlin Heidelberg New York, 1999.Google Scholar
  53. 53.
    D. Pfoser, C.S. Jensen, and J. Theodoridis. Novel approaches in query processing for moving object trajectories. In Proceedings of the 26th International Conference Very Large Databases (VLDB’00), pp. 395–406. Morgan Kaufmann, Los Altos, CA, 2000.Google Scholar
  54. 54.
    D. Pokrajac and Z. Obradovic. Improved spatial-temporal forecasting through modelling of spatial residuals in recent history. In Proceedings of the 1st International Conference on Data Mining (SDM’01), 2001.Google Scholar
  55. 55.
    S. Saltenis, C.S. Jensen, S.T. Leutenegger, and M.A. Lopez. Indexing the positions of continuously moving objects. In Proceedings of the International Conference on Management of Data (SIGMOD’00), pp. 331–342. ACM, New York, 2000.CrossRefGoogle Scholar
  56. 56.
    L. Song and X. He. Evaluating next-cell predictors with extensive Wi-Fi mobility data. IEEE Transactions on Mobile Computing, 5(12):1633–1649, 2006.CrossRefGoogle Scholar
  57. 57.
    J. Sun, D. Papadias, Y. Tao, and B. Liu. Querying about the past, the present, and the future in spatio-temporal databases. In Proceedings of the 20th International Conference on Data Engineering (ICDE’04), pp. 202–213. IEEE, Los Alamitos, CA, 2004.CrossRefGoogle Scholar
  58. 58.
    Swiss Poster Research Plus. http://www.spr-plus.ch, 2007.
  59. 59.
    Y. Tao and D. Papadias. Time-parameterized queries in spatio-temporal databases. In Proceedings of the International Conference on Management of Data (SIGMOD’02), pp. 334–345. ACM, New York, 2002.Google Scholar
  60. 60.
    Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An optimized spatio-temporal access method for predictive queries. In Proceedings of 29th International Conference on Very Large Data Bases (VLDB’03), pp. 790–801. Morgan Kaufmann, Los Altos, CA, 2003.Google Scholar
  61. 61.
    Y. Tao, J. Sun, and D. Papadias. Analysis of predictive spatio-temporal queries. ACM Transactions on Database Systems, 28(4):295–336, 2003.CrossRefGoogle Scholar
  62. 62.
    G. Trajcevski, O. Wolfson, K. Hinrichs, and S. Chamberlain. Managing uncertainty in moving objects databases. ACM Transactions on Database Systems, 29(3):463–507, 2004.CrossRefGoogle Scholar
  63. 63.
    A. Vautier, M.-O. Cordier, and R. Quiniou. An inductive database for mining temporal patterns in event sequences. In ECML/PKDD Workshop on Mining Spatial and Temporal Data, 2005.Google Scholar
  64. 64.
    M. Vlachos, D. Gunopulos, and G. Das. Rotation invariant distance measures for trajectories. In Proceedings of the 10th ACM International Conference on Knowledge Discovery and Data Mining (KDD’04), pp. 707–712. ACM, New York, 2004.CrossRefGoogle Scholar
  65. 65.
    M. Vlachos, M. Hadjieleftheriou, D. Gunopulos, and E.J. Keogh. Indexing multi-dimensional time-series with support for multiple distance measures. In Proceedings of the 9th ACM International Conference on Knowledge Discovery and Data Mining (KDD’03), pp. 216–225. ACM, New York, 2003.Google Scholar
  66. 66.
    M. Vlachos, G. Kollios, and D. Gunopulos. Discovering similar multidimensional trajectories. In Proceedings of the 18th International Conference on Data Engineering (ICDE’02), pp. 673–684. IEEE, San Jose, CA, 2002.CrossRefGoogle Scholar
  67. 67.
    Y. Wang, E.-P. Lim, and S.-Y. Hwang. On mining group patterns of mobile users. In Proceedings of the 14th International Conference on Database and Expert Systems Applications (DEXA’03), pp. 287–296. Springer, Berlin Heidelberg New York, 2003.Google Scholar
  68. 68.
    J. Yang and M. Hu. TrajPattern: Mining sequential patterns from imprecise trajectories of mobile objects. In Proceedings of 10th International Conference on Extending Database Technology (EDBT’06), pp. 664–681. Springer, Berlin Heidelberg New York, 2006.Google Scholar
  69. 69.
    G. Yavas, D. Katsaros, Ö. Ulusoy, and Y. Manolopoulos. A data mining approach for location prediction in mobile environments. Data and Knowledge Engineering, 54(2):121–146, 2005.CrossRefGoogle Scholar
  70. 70.
    P. Zhang, Y. Huang, S. Shekhar, and V. Kumar. Correlation analysis of spatial time series datasets: A filter-and-refine approach. In Proceedings of the 7th Pacific–Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD’03), pp. 532–544. Springer, Berlin Heidelberg New York, 2003.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Nanni
    • 1
  • B. Kuijpers
    • 2
  • C. Körner
    • 3
  • M. May
    • 3
  • D. Pedreschi
    • 4
  1. 1.KDD LaboratoryISTI-CNRPisaItaly
  2. 2.Theoretical Computer Science GroupHasselt University and Transnational University of LimburgBelgium
  3. 3.Fraunhofer Institut Intelligente Analyse- und InformationssystemeSankt AugustinGermany
  4. 4.KDD Laboratory, Dipartimento di InformaticaUniversità di PisaItaly

Personalised recommendations