Advertisement

Reconstruction of Mammalian Cell Cycle Regulatory Network from Microarray Data Using Stochastic Logical Networks

  • Bartek Wilczyński
  • Jerzy Tiuryn
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4695)

Abstract

We present a novel algorithm for reconstructing the topology of regulatory networks based on the Stochastic Logical Network model. Our method, by avoiding the computation of the Markov model parameters is able to reconstruct the topology of the SLN model in polynomial time instead of exponential as in previous study [29]. To test the performance of the method, we apply it to different datasets (both synthetic and experimental) covering the expression of several cell cycle regulators which have been thoroughly studied [18,11]. We compare the results of our method with the popular Dynamic Bayesian Network approach in order to quantify the ability to reconstruct true dependencies. Although both methods able to recover only a part of the true dependencies from realistic data, our method gives consistently better results than Dynamic Bayesian Networks in terms of the number of correctly reconstructed edges, sensitivity and statistical significance.

Keywords

Bayesian Network Boolean Network Minimum Description Length Regulatory Dependency Dynamic Bayesian Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Pacific Symposia on Biocomputing, pp. 17–28 (1999)Google Scholar
  2. 2.
    Baum, L.E., Peterie, T., Souled, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Ann. Math. Statist. 41(1), 164–171 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chaouiya, C., de Jong, H., Thieffry, D.: Dynamical modeling of biological regulatory networks. Biosystems 84(2), 77–80 (2006)CrossRefGoogle Scholar
  4. 4.
    Chen, K.-C., Wang, T.-Y., Tseng, H.-H., Huang, C.-Y., Kao, C.-Y.: A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics Evaluation Studies 21(12), 2883–2890 (2005)Google Scholar
  5. 5.
    Cho, R.J., Huang, M., Campbell, M.J., Dong, H., Steinmetz, L., Sapinoso, L., Hampton, G., Elledge, S.J., Davis, R.W., Lockhart, D.J.: Transcriptional regulation and function during the human cell cycle. Nat. Genet. 27(1), 48–54 (2001)CrossRefGoogle Scholar
  6. 6.
    D’Agostino, R.B., Chase, W., Belanger, A.: The appropriateness of some common proceduresfor testing the equality of two independent binomial populations. The American Statistician 42(3), 198–202 (1988)CrossRefGoogle Scholar
  7. 7.
    Eric, H.D., Rast, Oliveri, Ransick, Calestani, Yuh, Minokawa, Amore, Hinman, Arenas-Mena, Otim, Brown, Livi, Lee, Revilla, Rust, Pan, Schilstra, Clarke, Arnone, Rowen, Cameron, McClay, Hood, Bolouri, Davidson E.H.: A genomic regulatory network for development. Science (2002)Google Scholar
  8. 8.
    Dojer, N.: Learning Bayesian networks does not have to be NP-hard. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 305–314. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Dojer, N., Gambin, A., Wilczyński, B., Tiuryn, J.: Applying dynamic Bayesian networks to perturbed gene expression data. BMC Bioinformatics 7, 249 (2006)CrossRefGoogle Scholar
  10. 10.
    Ermentrout, B.: Simulating, Analyzing, and Animating Dynamical Systems: A Guide to Xppaut for Researchers and Students. In: Society for Industrial and Applied Mathematics, 1st edn. (2002)Google Scholar
  11. 11.
    Faure, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14), 124–131 (2006)CrossRefGoogle Scholar
  12. 12.
    Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to analyze expression data. Journal of Computational Biology 7, 601–620 (2000)CrossRefGoogle Scholar
  13. 13.
    Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17), 2271–2282 (2003)CrossRefGoogle Scholar
  14. 14.
    Imoto, S., Goto, T., Miyano, S.: Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression. In: Pacific Symposia on Biocomputing, pp. 175–186 (2002)Google Scholar
  15. 15.
    Liang, S., Fuhrman, S., Somogyi, R.: Reveal, a general reverse engineering algorithm for inference of genetic network architectures. In: Pacific Symposia on Biocomputing, pp. 18–29 (1998)Google Scholar
  16. 16.
    Mendoza, L., Thieffry, D., Alvarez-Buylla, E.R.: Genetic control of flower morphogenesis in arabidopsis thaliana: a logical analyssis. Journal of Theoretical Biology (1999)Google Scholar
  17. 17.
    Murphy, K., Mian, S.: Modelling gene expression data using dynamic Bayesian networks. University of California, Berkeley (1999)Google Scholar
  18. 18.
    Novak, B., Tyson, J.: A model for restriction point control of the mammalian cell cycle. J. Theor. Biol. 230(4), 563–579 (2004)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Ott, S., Imoto, S., Miyano, S.: Finding optimal models for gene networks. In: Proc. of Pacific Symposia in Biocomputing (2004)Google Scholar
  20. 20.
    Parkinson, H., Sarkans, U., Shojatalab, M., Abeygunawardena, N., Contrino, S., Coulson, R., Farne, A., Lara, G.G., Holloway, E., Kapushesky, M., Lilja, P., Mukherjee, G., Oezcimen, A., Rayner, T., Rocca-Serra, P., Sharma, A., Sansone, S., Brazma, A.: ArrayExpress–a public repository for microarray gene expression data at the EBI. Nucleic Acids Res. 33, 553–555 (2005)CrossRefGoogle Scholar
  21. 21.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan-Kauffman, San Francisco, CA (1988)Google Scholar
  22. 22.
    Sanchez, L., Thieffry, D.: Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module. J. Theor. Biol. 224(4), 517–537 (2003)CrossRefGoogle Scholar
  23. 23.
    Shedden, K., Cooper, S.: Analysis of cell-cycle-specific gene expression in human cells as determined by microarrays and double-thymidine block synchronization. Proc. Natl. Acad. Sci. USA 99(7), 4379–4384 (2002)CrossRefGoogle Scholar
  24. 24.
    Shi, Y., Mitchell, T., Bar-Joseph, Z.: Inferring Pairwise Regulatory Relationships from Multiple Time Series Datasets. Bioinformatics, JOURNAL ARTICLE (January 2007)Google Scholar
  25. 25.
    Shmulevich, I., Dougherty, E., Kim, S., Zhang, W.: Probabilistic Boolean Networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics 18(2), 261–274 (2002)CrossRefGoogle Scholar
  26. 26.
    Thomas, R.: Boolean formalization of genetic control circuits. Journal of Theoretical Biology 42, 563 (1973)CrossRefGoogle Scholar
  27. 27.
    Thomas, R., D’Ari, R.: Biological Feedback. CRC Press, Boca Raton, USA (1990)zbMATHGoogle Scholar
  28. 28.
    Whitfield, M.L., Sherlock, G., Saldanha, A.J., Murray, J.I., Ball, C.A., Alexander, K.E., Matese, J.C., Perou, C.M., Hurt, M.M., Brown, P.O., Botstein, D.: Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell. 13(6), 1977–2000 (2002)CrossRefGoogle Scholar
  29. 29.
    Wilczyński, B., Tiuryn, J.: Regulatory network reconstruction using Stochastic Logical Networks. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 142–154. Springer, Heidelberg (2006), http://dx.doi.org/10.1007/11885191_10 CrossRefGoogle Scholar
  30. 30.
    Novak and tyson cell cycle model webpage: http://mpf.biol.vt.edu/research/generic_model
  31. 31.
  32. 32.
    Mammalian cell cycle reconstruction – supplementary webpage: http://bioputer.mimuw.edu.pl/papers/bw/cmsb07/
  33. 33.
    Zhao, W., Serpedin, E., Dougherty, E.: Inferring gene regulatory networks from time series data using the minimum description length principle. Bioinformatics 22(17), 2129–2135 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Bartek Wilczyński
    • 1
    • 2
  • Jerzy Tiuryn
    • 2
  1. 1.Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-956 WarsawPoland
  2. 2.Institute of Informatics, Warsaw University, Banacha 2, 02-089 WarsawPoland

Personalised recommendations