Context Sensitivity in Logical Modeling with Time Delays

  • Heike Siebert
  • Alexander Bockmayr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4695)


For modeling and analyzing regulatory networks based on qualitative information and possibly additional temporal constraints, approaches using hybrid automata can be very helpful. The formalism focussed on in this paper starts from the logical description developed by R. Thomas to capture network structure and qualitative behavior of a system. Using the framework of timed automata, the analysis of the dynamics can be refined by adding a continuous time evolution. This allows for the incorporation of data on time delays associated with specific processes. In general, structural aspects such as character and strength of interactions as well as time delays are context sensitive in the sense that they depend on the current state of the system. We propose an enhancement of the approach described above, integrating both structural and temporal context sensitivity.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R.: Timed Automata. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 8–22. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: extending Thomas’ asynchronous logical approach with temporal logic. J. Theor. Biol. 229, 339–347 (2004)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Glass, L., Kauffman, S.A.: The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39, 103–129 (1973)CrossRefGoogle Scholar
  4. 4.
    Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22, 437–467 (1969)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Oppenheim, A., Kobiler, O., Stavans, J., Court, D., Adhya, S.: Switches in bacteriophage lambda development. Annu. Rev. Genet. 39, 409–429 (2005)CrossRefGoogle Scholar
  6. 6.
    Remy, É., Ruet, P., Thieffry, D.: Graphic requirements for multistability and attractive cycles in a boolean dynamical framework. Prépublication (2005)Google Scholar
  7. 7.
    Richard, A., Comet, J.-P.: Necessary conditions for multistationarity in discrete dynamical systems. Rapport de Recherche 123 (2005)Google Scholar
  8. 8.
    Siebert, H., Bockmayr, A.: Incorporating time delays into the logical analysis of gene regulatory networks. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 169–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Siebert, H., Bockmayr, A.: Temporal constraints in the logical analysis of regulatory networks. Matheon Preprint 385 (2007)Google Scholar
  10. 10.
    Sugita, M.: Functional analysis of chemical systems in vivo using a logical circuit equivalent. J. Theor. Biol. 1, 415–430 (1961)Google Scholar
  11. 11.
    Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks - II Immunity control in bacteriophage lambda. Bull. Math. Biol. 57, 277–297 (1995)MATHGoogle Scholar
  12. 12.
    Thomas, R.: Boolean formalisation of genetic control circuits. J. Theor. Biol. 42, 565–583 (1973)CrossRefGoogle Scholar
  13. 13.
    Thomas, R., d’Ari, R.: Biological Feedback. CRC Press, Boca Raton, USA (1990)MATHGoogle Scholar
  14. 14.
    Thomas, R., Kaufman, M.: Multistationarity, the basis of cell differentiation and memory. II. Logical analysis of regulatory networks in terms of feedback circuits. Chaos 11, 180–195 (2001)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Heike Siebert
    • 1
  • Alexander Bockmayr
    • 1
  1. 1.DFG Research Center Matheon, Freie Universität Berlin, Arnimallee 3, D-14195 BerlinGermany

Personalised recommendations